证明是数学思想中*重要,也是*开拓性的特征之一。没有证明,*无法谈论真正的数学。本书讲述了证明的演变及其在数学中的重要作用和启发意义。从古希腊几何学时代开始,涵盖代数、微积分、集合、数论、拓扑、逻辑等几乎全部数学分支中的证明故事。我们将看到欧几里德、康托尔、哥德尔、图灵等数学大师的精彩发现和发明。这本书不是教材,它是在讲数学的历史,更是在讲数学思想的演变。作者揭示了数学学习和研究的底层方法和逻辑,让读者看到在数学中什么定理可以被证明,如何证明?什么问题可以(或无法)被解决?为数学研究和发展打开全新的视角。
本书为日本数学家、菲尔兹奖得主广中平祐的思想文集。书中以“创造性思维”为线索,讲述了作者在数学研究中总结出的思考模式——“可变思考”,并在问题的发现、提出、整理、转换等方面做了具体阐述,让读者了解数学家独特的多维度思考方法。同时,本书还对日本数学教育中的问题做了分析,提出了学校教育、*子教育中培养创造性思维的原则与方法。本书是广中平祐先生对自己研究方法的系统性总结,是了解其思想以及日本数学研究方法的珍贵资料。
面积法是一种有着悠久历史的传统方法。近几十年来, 面积法体系得到进一步的发展, 焕发出新的生命力, 如今已成为平面几何中的基本方法,甚*成为解决很多几何难题的通法。 本书介绍了用面积法解题的基本工具 (共边定理和共角定理) 以及指导思想 (消点法), 并辅以大量例题来说明用面积法解题的有效性。 另外, 书中还介绍了面积法与勾股定理、 托勒密定理等的关系, 以及面积法在不等式、 三角等多个数学分支中的应用。 本书以面积法为主线, 串接了许多有趣的数学内容, 适合中小学师生以及数学爱好者阅读。 我们很高兴看到读者对我们的认可。现在,我们对这本书进行了完善并重新出版,希望能对你学*几何有一点帮助 .
暂无内容简介。。。。。。
本书是面向各年龄层次数学爱好者、以及自认为"数学不好的人”的一本科普书。 本书的创作宗旨在于选择有趣且不太为人熟知的数学问题,从有意思的角度切入讲解问题,力求以浅显和生动的语言,将较为高深的数学知识介绍给读者,使读者不但能理解这些问题,更能获得思路继续研究和赏玩,从而获得更多乐趣。让读者摆脱数学恐惧症,建立数学思维,爱上学数学。作者也将数学家攻克此问题的过程中所遇到的困难,解决困难的思路一一整理,呈现给读者。让读者既能有读"历史”书一般的趣味,也能感受数学家的高超思维模式与某些问题的意外困难。 本书涉及的数学问题方面很广,包含数论,图论,微积分,概率论,博弈论,物理中的数学等等,按话题内容方向组织为8章,基本按从易到难排列。其中末章"历史趣味”是泛数学文化方面的话题,有
作者从三个方面:数、数与式的运算、数学学科阐述了数学概念的来源,以丰富的史料和通俗易懂的语言,通过图文并茂的形式,展示了数学主要概念产生的缘由与发展的历程。之所以写这本书,是因为数学概念是数学的核心内容,数学概念的教学与学习十分重要。但是,数学概念的教学与学习不能成为死记硬背的教条或单纯演算的训练,这样无助于对数学的理解,也无助于培养独立思考能力。教师和学生应该知道数学概念是从哪里来的,又是怎样演化和完善的。要知道,一个数学概念的形成往往需要一个过程,有时是一个极其复杂的过程。这个过程正是数学发展的过程,了解了这个过程可以使人们更加走近数学,正确认识数学;会让我们感到数学是活的东西而不是死板的玩意;进而开拓思维,激发兴趣,更好地学习数学。
暂无内容简介。。。。。。
本书为日本数学家小平邦彦晚年创作的经典微积分著作,有别于一般的微积分教科书,本书突出 严密 与 直观 的结合,重视数学中的 和谐 与 美感 ,讲解新颖别致、自成体系,论证清晰详尽、环环相扣,行文深入浅出、流畅易读,从原理、思想到方法、应用,处处体现了小平邦彦的深厚功力与广阔视野。作者着眼数学分析的深处,结合自身独到的思考与理解,从严谨的实数理论出发思谋微积分,通过巧妙引导,启发读者自主思考,提升对微积分的领悟理解程度。 本书是小平邦彦为后人留下的一份重要文化财富,不仅值得数学专业人士研读,对于需要微积分知识的其他理工科学生和专业人员也具有深刻启示。
本书是初等数论入门的通俗科普读本。书中以身边的生活之事为例,由浅入深、生动形象地介绍了数的奇妙性质与规律。作者用直观、易懂的讲解,引领读者去体会数论证明的不可思议与酣畅淋漓,在惊奇与畅快之中提升对数学的理解程度。本书可作为学生了解数论、提高算术能力的辅助读物,也可作为技术人员理解计算科学的参考用书。
暂无内容简介。。。。。。
本书讲述了一种理解和学习微积分的新思路。书中通过探索微积分发展历程背后的数学动机,展现了这一数学基本工具的魅力。作者根据自己研究和教授微积分的丰富经验,结合多年从事中学和大学数学教育的心得体会,对传统的微积分教学方式,即大多按照从极限、微分、积分到级数的顺序进行学习的方法提出了异议,探讨了一种更有趣、更易被接受和理解的学习方法。作者写过不少富有启发意义的微积分教材,此次利用自己在教学与研究方面的特长,写成了这本内容丰富、风格有趣的 小书 。本书适合中学以上水平的数学爱好者、学生和教师阅读。
9787115370624 数学与生活(修订版) 42.00 9787115542083 数学与生活2 要领与方法 49.00 《数学与生活(修订版)》 《数学与生活(修订版)》以生动有趣的文字,系统地介绍了从数的产生到微分方程的全部数学知识,包括初等数学和高等数学两方面内容之精华。这些知识是人们今后从事各种活动所必须的。书中为广大读者着想,避开了专用术语,力求结合日常逻辑来介绍数学。读来引人入胜,枯燥之感。从中不但可得益于数学,而且还可学到不少物理、化学、天文、地理等方面的知识。 《数学与生活2 要领与方法》 本书为日本数学教育议会创立者远山启的数学教育科普作品。书中通俗解读了数学教育中的重点、难点知识,用直观的方式梳理了“量与数”“集合与逻辑”“空间与图形”“变数与函数”的知识体系,并结合作者多年的教学与研究经验,向读者传授了*创的
在了解这个世界的过程中,现实经常会挑战我们的感官和直觉,让我们震惊不已。这时,数学*像一把雨伞,当撑开这把雨伞时,我们仿佛进入了一个奇特的境界,有了迈向真相、行走在谜团中的勇气;当收起这把雨伞时,我们会发现自己的认知已大不一样,所谓的“理所应当”和“显而易见”将被摒弃,现实背后隐藏的真相将带来巨大的启发。这*是数学的力量。 从代数、几何到相对论,从温度计到黑洞,作者用简洁而生动的笔触阐释了如何更好地思索、观察与理解世界。让我们带上好奇心,撑开数学这把大伞,在宇宙的奥秘中漫步,体会解开疑惑后,如雨过天晴般的愉悦。
你觉得数学很无聊吗?再想想。 这本书以趣味的方式讲述了代数学和微积分的故事,探索了数个世纪以来令人惊讶的数学发展过程。你知道布尔代数吗?它只使用了两个数字:1 和 0。在布尔运算中,1 1 总是等于 1。尽管这看起来很奇怪,但这种代数方法被用于在每个微芯片中创建纳米级的电路。此外,我们将会遇到像丢番图和牛顿这样的天才,他们成功地将数学问题转化为通用的技术手段;还会看到古埃及测绘者如何测量土地,欧几里得的《几何原本》为何至今仍未过时,计算机芯片如何处理程序,以及高斯如何在不到 1 分钟的时间里计算出 1 到 100 之间的所有数字相加的和 当时他只有10岁! 这本书旨在激发读者对数学的热情。
本书从数学、哲学、计算机科学、神经科学和人工智能等角度,全面阐述了贝叶斯理论背后的基础知识、思维方式和丰富哲理。贝叶斯定理一旦与算法相结合,就不再是一套枯燥的数学理论或认识论,而变成了应用广泛的知识宝库,催生了众多现代数学定理,以及令人称道的实践成果。作者一改传统的数学探讨模式,不仅展现了贝叶斯理论背后的科学思想,还阐述了它与人类思维之间的深刻关系,并对各相关领域和人工智能的发展进行了展望。本书适合喜爱数学、算法、机器学习、人工智能、逻辑学和哲学的大众读者,读者无须过多数学和算法知识就能读懂。
本书为线性代数入门的科普读物,书中以“如何理解线性代数”“如何理解矩阵的基础概念与计算方法”为线索,用漫画故事生动呈现了线性代数初学者的学习历程。作者从学习者的角度出发,结合生活例子讲解了线性代数中的基础概念及实际应用意义,解答了初学者在的常见困惑。本书讲解直观、通俗,适合作为正式学习线性代数前的入门读本,也适合作为了解线性代数原理的科普读物。
本书是哈代于1940年写成的心得之作,展现了数学之美、数学的持久性和数学的重要性三大主题。作者从自己的角度谈论了数学中的美学,给众多数学 门外汉 一个机会,洞察工作中的数学家的内心。作者还讨论了数学的本质与特点、数学的历史及其社会功能等诸多话题。该书被称为是 用优雅的语言对数学真谛进行了充分的揭示 ,原汁原味地向读者展示了一位真正、纯粹的数学家的数学思想,是数学的经典读物。
本书为“数学糖果”系列的第2册,依然秉承“从发散性的思考中寻找乐趣,从系统性的总结中拓展认知”的原则,结合数学史料、趣味科普知识、实际生活经验,配以丰富的卡通图画,展示数学中的20个知识点。 本书内容包括3部分: 无穷、*不利原则、递推等思维小知识;无理数、杠杆、方程等算术小知识;立体图形、皮克公式、帕普斯定理等几何小知识。 牛顿自述是在真理的海边拾捡漂亮贝壳的孩童。本书在选择知识点时向这个有趣的比喻致敬: 在数学的海边堆积了一些有趣的小石头——书中20个知识点皆与小石头相关。希望在数学的海边漫步的各位读者,可从这堆小石头中收获拾捡钟意之物的乐趣。
9787115440273 数学万花筒(修订版) 39.00 9787115444349 数学万花筒3 夏尔摩斯探案集 39.00 9787115449849 数学万花筒2(修订版) 39.00 《数学万花筒(修订版)》 在他十四岁时,伊恩·斯图尔特开始收集各种他感到有趣但又没有在学校教授的数学,因为他知道,在学校里学的数学并不是数学的全部。他发现,在学校里没有学到的数学其实十分有趣——事实上,其中很多会趣味十足,特别是当不需要担心通过考试或者正确求和时。 本书便是斯图尔特教授五十多年收藏的精选,是有趣的数学游戏、谜题、故事和八卦的大杂烩。大部分内容独立成篇,你可以从几乎任意一处着手阅读。除去可以了解各种有趣的数学知识和八卦,你还可以亲自参与到数学当中,亲自制作数学游戏,试着解决数学谜题。作为参考,本书**后给出了那些有已知答案的问题的解答,以及一些供进一步探
本书基于麻省理工学院开设的概率论入门课程编写,内容*,例题和习题丰富,结构层 次性强,能够满足不同读者的需求。书中介绍了概率模型、离散随机变量和连续随机变量、多元随机变量以及极限理论等概率论基础知识,还介绍了矩母函数、条件概率的现代定义、独立随机变量的和、*小二乘估计等*内容。
本书从贝叶斯理论的基本原理讲起,逐步深入算法、机器学习、深度学习,并配合项目案例,重点介绍了基于贝叶斯理论的算法原理,及其在机器学习中的应用。 本书分为10章,涵盖了贝叶斯概率、概率估计、贝叶斯分类、随机场、参数估计、机器学习、深度学习、贝叶斯网络、动态贝叶斯网络、贝叶斯深度学习等。本书涉及的应用领域包含机器学习、图像处理、语音识别、语义分析等。本书整体由易到难,逐步深入,内容以算法原理讲解和应用解析为主,每节内容辅以案例进行综合讲解。 本书内容通俗易懂,案例贴合实际,实用性强,适合有一定算法基础的读者进阶阅读,也适合其他人作为爱好阅读。