数论是研究数的性质的一门学科。《数论经典著作系列:初等数论(Ⅱ)》从科学实验的实际经验出发,分析了数论的发生、发展和应用,介绍了数论的初等方法。《数论经典著作系列:初等数论(Ⅱ)》为《初等数论(I)》的后续,介绍了剩余系、数论函数、三角和等方法。每章后有习题,并在书末附有全部习题解答。《数论经典著作系列:初等数论(Ⅱ)》写得深入浅出,通俗易懂,可供广大青年及科技人员阅读。
数论是研究数的性质的一门学科。《数论经典著作系列:初等数论(Ⅰ)》从科学实验的实际经验出发,分析了数论的发生、发展和应用,介绍了数论的初等方法。《数论经典著作系列:初等数论(Ⅰ)》包含整数的性质、数的进位法、一部分不定方程和一次同余式及解法四章。每章后有习题,并在书末附有全部习题解答。《数论经典著作系列:初等数论(Ⅰ)》写得深入浅出,通俗易懂,可供广大青年及科技人员阅读。
《抽象代数习题精选精解》章是抽象代数的基本概念。第二章是群论,内容包括循环群、置换群、不变子群、商群、群同态、群在集合上的作用、Sylow定理、群的直积等。第三章是环和域,内容包括整环、除环、理想、商环、环同态、素理想与极大理想等。第四章是整环的因子分解。第五章是域,包括素域、单扩域、代数扩域、有限域等。 我们在《抽象代数习题精选精解》各节的部分给出了相关内容的定义和重要结论,这些是相关内容的重点和难点;第二部分给出了大量的习题,并将习题按照知识点分类,难易搭配,以便帮助读者更好地掌握相关知识以及更好地掌握解题技巧。我们对《抽象代数习题精选精解》的习题解答努力做到详尽,希望能够为读者学习这门课程提供帮助。
随着数学的不断发展,不定方程的重要性日益显著。现代数学的重要分支,如代数数论,代数几何,表示理论……都在这里交汇。不定方程几乎成为一块试金石,用以检验新的数学理论和新的数学方法。 本书是为丰富中学生的数学知识而写的小册子。 为便于学生学习,尽量使用初等方法来讨论在初等数学(特别是各级数学竞赛)中经常遇到的不定方程。学生阅读不定方程所需的一些整数知识,在本书的附录中也作了阐述,可供参考。
《费马大定理:一个困惑了世间智者358年的谜》是关于一个困惑了世间智者358年的谜题的传奇。《费马大定理:一个困惑了世间智者358年的谜》既有振奋人心的故事讲述方式,也有引人入胜的科学发现的历史。西蒙·辛格讲述了一个英国人,经过数年秘密辛苦的工作,终于解决了挑战性的数学问题的艰辛旅程。
本书的编写依据是*颁布的高等学校财经类专业核心课程《经济数学基础——微积分》教学大纲,同时参考了近年来经济管理类硕士研究生入学统一考试数学考试大纲。因此,它可以作为高等财经院校本科各专业的《微积分》课程教材使用,亦可供有志学习本课程的自学者选用。 本书在内容取舍上尤其注重数学与经济学的有机结合,强调微积分的概念及有关原理在经济学中的应用,强调本书用到的有关经济学的概念的严密性与规范性,力图在保持传统教材优点的基础上,把微积分的基本原理和经济学的相关知识恰当结合,以更有利于课程的讲授与学习,并为学生以后的经济学学习打下良好的数学基础。 本书充分注意到数学基本概念和原理的逻辑性与严密性,同时也考虑了一些数学基本概念在经济学中的特殊应用。
《高等数学(第3版)/21世纪高校教材》共分九章,包括函数与向量、极限与连续、导数与微分、中值定理与导数的应用、定积分与不定积分、二重积分与曲线积分、微分方程、无穷级数、概率论基础. 《高等数学(第3版)/21世纪高校教材》每章配套习题与习题课结合使用,辅以复习题训练,目的是帮助读者理解、消化和复习教材主体内容,编写中注重培养学生良好的科学思维习惯及实际应用能力. 《高等数学(第3版)/21世纪高校教材》适用于应用型高等院校理工类和经济类各专业的公共数学课教学,也可供高等数学授课教师作为教参使用,以及提供给学生作考研辅导和竞赛指导使用.
概率论与数理统计是大学理工科的主要基础课程之一,也是硕士研究生入学考试的一门重要课程。编写本书的目的是帮助读者正确理解和掌握一些基本概念与解题方法以提高学习效率,并为学生提供一份课外复习资料。蒋家尚主编的这本《概率论与数理统计习题课教程》的内容体系参照了浙江大学盛骤等编写的《概率论与数理统计》,适用于各类各层次的概率论与数理统计学习者,对报考硕士研究生的读者亦有的帮助,也可作为教师的教学参考用书。
《数学与人文》丛书第四辑将继续着力贯彻“让数学成为国人文化的一部分”的宗旨,展示数学丰富多彩的方面。《女性与数学》主题栏目“数坛巾帼”,通过部分女数学家的评传,以历史实例来引发对“女性与数学”这一社会课题的思考。特别是,本专栏刊登了两位活跃在现代数学前沿的女数学家的访谈录,她们的成长经历会引起读者的兴趣。 本辑“数海钩沉”栏目刊发丘成桐先生“清末与日本明治维新时期数学人才引进之比较”,以史为鉴,发人深省;“数学星空”栏目特约文章冯端院士“纪念冯康院士诞辰90周年”,真切感人;新辟栏目“数学人生”,刊数学家们探求真理的人生感悟与经验之谈,本辑特载国家科技奖获得者谷超豪先生激励人心的讲演“请勿歌仰止,雄峰正相迎”;“数学家诗词”栏目,为数学家开辟发表诗作的园地;“数学之旅”栏目,发
本书是大学本科一学期周3学时的“抽象代数”课的教材,主要内容是群、环、域的基础知识。本书的特点是简明实用,注重讲清抽象代数的思想和精神。本书还配备了适当数量的习题,并分基本题与补充题两个层次设置,便干学生自学和教师选题。 本书可作为综合性大学、一般院校或师范院校的“抽象代数”课教材,特别适合周3学时的教学使用。
本书是MATLAB数学建模应用系列书籍之一,以MATLAB R2016a软件版本为基础,根据数学建模的需要编写,包含了多种数学建模问题的MATLAB求解方法,是解决数学实验和数学建模的有力工具。全书共18章,分为前后两个部分,~10章属于前部分,1~18章属于后部分。前部分从MATLAB基础和数学建模基础知识介绍开始,详细介绍MATLAB程序设计、常用MATLAB建模函数、数学规划模型、智能优化算法、Simulink简介、MATLAB图像处理算法等内容; 后部分介绍了水质评价与预测、投资收益与风险、旅行商问题、很优捕鱼策略、裁剪与复原、DNA序列分类、卫星和飞船的跟踪测控、中国人口增长预测等8个典型建模问题的MATLAB求解方法,引导读者深入挖掘各种建模问题背后的数学问题和求解方法。很后,在附录中给出了MATLAB基本命令的介绍,便于读者使用和研究。本书以MATLAB数学建模基础为主线,结
本书是为适应蓬勃发展的研究生教育,根据“矩阵分析”(或“矩阵论”)课程教学 基本要求编写而成的。主要讲述大多数理学、工学、管理学、经济学等各专业常用的、 一般的矩阵基本理论和方法。内容包括基础知识,矩阵的Jordan标准形。线性空间与 线性变换,内积空间,矩阵分析,广义逆矩阵,矩阵的范数和特征值估计。各章都配有 一定数量的习题用作练习,以帮助学生巩固知识。 本书内容简明得当,主次分明,叙述通俗易懂,既具有数学的抽象性和严密性,又 重视工程技术中的实用性,可用作高等院校非数学类专业研究生的教材,也可供其他 师生和工程技术人员阅读参考。
本书是《面向21世纪高职高专规划教材——线性代数》配套的学习辅导书,在讲解各章教学要求、学习难点、重点和脉络的基础上,以问答的形式解释了许多疑难问题,讲解了一些典型例题,并给出了教材全部习题的详细解答和相应的解题技巧分析。 本书适合作为高职高专“线性代数”课程的辅导书和参考书,也可供相关学生及教师参考。
本书内容贯彻了“教材全解系列”讲解细致、层次清晰、深入浅出的特点,并在此基础上突出了三大亮点: 1.过程步骤详,方法技巧全。 对于课后题和本书选编的例题,本书都给出了详尽的解题步骤,有的习题还给出多种解法,方便读者比较各种解题方法,掌握多种解题技巧。 2.关键步骤加批注,讲解更到位。 “本章课后习题全解”部分根据题目的难度和重要性,将习题分三个等级,并在题号前标示出“易”、“中”、“难”。此部分不但解答步骤详尽,并且关键步骤都加了注解,方便读者更加高效地学习。 3.密切联系考研,精选并详解考研真题。 在“常考基本题型”、“本章综合拔高题型精讲”栏目里,精选了近年考研经典题目,详细阐述解题方法和技巧,部分例题给出了两种及两种以上的解法,让读者了解本章节知识点在考研中的考查
本书是学习高等数学课程的一本很好的辅导书。本书与同济大学《高等数学》第六版同步,下册内容包括空间解析几何与向量代数、多元函数微分学及其应用、重积分、曲线积分与曲面积分、无穷级数。本书的特点是着重数学思想、方法的理解与应用,在疑难分析中,对概念理解与方法运用中可能产生的问题都作了详细的阐述与诠释。在解题方法中,不仅对“同济六版”中的全部习题作了详尽的解答,还补充了相当数量的例题,对高等数学的解题方法作了精彩的演绎、归纳、评点,相信读者通过学习本书,将完全掌握高等数学的思想与方法。本书还附有历年研究生入学考试题的分析解答,对读者考研复习与把握考研方向非常有益。欢迎读者选用本书与本系列丛书。
本书根据工科数学课程教学基本要求中线性代数部分的要求编写而成。内容包括行列式、矩阵、向量空间、线性方程组、矩阵的相似对角形和二次型共6章,所需学时为30学时。 本书可作为高等工科院校各专业的教学用书和教学参考书,也可作为大学专科及高等职业院校的教学用书及自学用书。
本书系统地总结了《数学分析》的基本知识、基本理论、基本方法和解题技巧,收集了大量的具有代表性的题目(其中大部分题目是来自于近几年一些高校的研究生入学试题),由浅入深地介绍了《数学分析》的解题思路和解题方法,在解题过程中启发读者进而打开思路并掌握技巧,使学生能够更好地融汇知识、理解概念和掌握方法,以提高学生分析问题和解决问题的能力。 本书包括:极限与连续、一元函数微分学、一元函数积分学、级数等8章内容。
数学文化小丛书精选对人类文明发展起过重要作用、在深化人类对世界的认识或推动人类对世界的改造方面有某种里程碑意义的主题,深入浅出地介绍数学文化的丰富内涵、数学发展史中的一些重要篇章以及一些著名数学家的历史功绩和优秀品质等内容,适于包括中学生在内的读者阅读。
本书分为上、下两册出版,上册共六章,内容为函数与极限,一元函数微分学,一元函数积分学,微分方程;下册共五章,内容为向量代数与空间解析几何,多元函数微分学,多元函数积分学,无穷级数。 为本书单独编制的习题册分为上、下两册,在学习每一节内容之后,为了达到教学的基本要求,读者应完成习题册中相应的习题,习题的答案与提示可参见教材(上册及下册)的后部分。 为了便于读者的学习,我们在每一章开头都安排了“导读”。在每一章结尾安排了“要点 解析”;此外,每一章还配置了复习题,以利于读者复习、巩固所学的知识。