本书是一本简单的书也是一本复杂的书,是一本遥远的书也是一本亲近的书。在书中,作者为大家介绍了10位来自不同地区的数学先驱的生平事迹与他们的伟大成就。也许其中介绍的一些数学问题你并不了解,也许里面的一些专业术语你并不熟悉,但是这并不会妨碍你对他们伟大人格的理解,也不妨碍你从他们身上了解到一些投身科学的精神。希望每个人都能从这本书中得到一定的启发,也相信通过作者的生动描述会让大家对看似枯燥的数学有一个崭新的认识。
《抽象代数习题精选精解》章是抽象代数的基本概念。第二章是群论,内容包括循环群、置换群、不变子群、商群、群同态、群在集合上的作用、Sylow定理、群的直积等。第三章是环和域,内容包括整环、除环、理想、商环、环同态、素理想与极大理想等。第四章是整环的因子分解。第五章是域,包括素域、单扩域、代数扩域、有限域等。 我们在《抽象代数习题精选精解》各节的部分给出了相关内容的定义和重要结论,这些是相关内容的重点和难点;第二部分给出了大量的习题,并将习题按照知识点分类,难易搭配,以便帮助读者更好地掌握相关知识以及更好地掌握解题技巧。我们对《抽象代数习题精选精解》的习题解答努力做到详尽,希望能够为读者学习这门课程提供帮助。
《费马大定理:一个困惑了世间智者358年的谜》是关于一个困惑了世间智者358年的谜题的传奇。《费马大定理:一个困惑了世间智者358年的谜》既有振奋人心的故事讲述方式,也有引人入胜的科学发现的历史。西蒙·辛格讲述了一个英国人,经过数年秘密辛苦的工作,终于解决了挑战性的数学问题的艰辛旅程。
全书遵循高等教育规律,突出高等职业教育的特点,注重对学生数学素养和应用能力的培养,体现数学建模思想。全书分为上、下两册共10章,内容包括:函数、极限与连续、导数的应用、一元函数的积分学、微分方程、向量代数与空间解析几何、多元函数微积分和无穷级数等。教材每章后附有历史的回顾与评述,主要介绍数学发展史与相关数学大师。本书对于所涉及的若干定理、推论、命题等,既不追求详细的证明过程,又不失数学理论的严谨;注重将数学建模思想融入到教学中;结合数学软件,培养学生处理数据以及求解数学模型的能力。与本书配套的辅助教材有《高等数学练习册》、《高等数学学习指导》。
本书是大学本科一学期周3学时的“抽象代数”课的教材,主要内容是群、环、域的基础知识。本书的特点是简明实用,注重讲清抽象代数的思想和精神。本书还配备了适当数量的习题,并分基本题与补充题两个层次设置,便干学生自学和教师选题。 本书可作为综合性大学、一般院校或师范院校的“抽象代数”课教材,特别适合周3学时的教学使用。
《数学与人文》丛书第四辑将继续着力贯彻“让数学成为国人文化的一部分”的宗旨,展示数学丰富多彩的方面。《女性与数学》主题栏目“数坛巾帼”,通过部分女数学家的评传,以历史实例来引发对“女性与数学”这一社会课题的思考。特别是,本专栏刊登了两位活跃在现代数学前沿的女数学家的访谈录,她们的成长经历会引起读者的兴趣。 本辑“数海钩沉”栏目刊发丘成桐先生“清末与日本明治维新时期数学人才引进之比较”,以史为鉴,发人深省;“数学星空”栏目特约文章冯端院士“纪念冯康院士诞辰90周年”,真切感人;新辟栏目“数学人生”,刊数学家们探求真理的人生感悟与经验之谈,本辑特载国家科技奖获得者谷超豪先生激励人心的讲演“请勿歌仰止,雄峰正相迎”;“数学家诗词”栏目,为数学家开辟发表诗作的园地;“数学之旅”栏目,发
《高等数学(第3版)/21世纪高校教材》共分九章,包括函数与向量、极限与连续、导数与微分、中值定理与导数的应用、定积分与不定积分、二重积分与曲线积分、微分方程、无穷级数、概率论基础. 《高等数学(第3版)/21世纪高校教材》每章配套习题与习题课结合使用,辅以复习题训练,目的是帮助读者理解、消化和复习教材主体内容,编写中注重培养学生良好的科学思维习惯及实际应用能力. 《高等数学(第3版)/21世纪高校教材》适用于应用型高等院校理工类和经济类各专业的公共数学课教学,也可供高等数学授课教师作为教参使用,以及提供给学生作考研辅导和竞赛指导使用.
概率论与数理统计是大学理工科的主要基础课程之一,也是硕士研究生入学考试的一门重要课程。编写本书的目的是帮助读者正确理解和掌握一些基本概念与解题方法以提高学习效率,并为学生提供一份课外复习资料。蒋家尚主编的这本《概率论与数理统计习题课教程》的内容体系参照了浙江大学盛骤等编写的《概率论与数理统计》,适用于各类各层次的概率论与数理统计学习者,对报考硕士研究生的读者亦有的帮助,也可作为教师的教学参考用书。
线性代数是一门重要的应用基础课,线性代数的基本理论、基本方法广泛应用于自然科学、技术科学、社会科学的各个方面,掌握这门学科的基本理论和方法,对提高运用数学知识解决有关问题的能力是重要的,也为后继课、专业课的学习打下良好的基层,为帮助学生学好这门学科,根据多年从事线性代数教学积累的经验,编写了《线性代数学习教程》。 全书每章以节为单位展开辅导,每节设有知识要点,重点难点释疑,典型题型分析,同步练习及其答案五部分。对线性代数的知识点进行归纳总结,介绍一般的解题方法。本书有助于学生掌握正确的学习线性代数的方法,巩固学习效果,可作为学习线性代数的辅导用书,也可作为教学参考书。
本书根据《工科类本科数学基础课程教学基本要求》及考研大纲编写而成,是多年教学改革与实践的经验总结.本书主要内容包括行列式、矩阵、元维向量组、线性方程组、特征值与特征向量、空间解析几何、二次型、线性代数问题的Maflab求解等知识.每章内容循序渐进,既考虑到高等院校一般工科学生使用,又根据考研的实际情况,设置了知识结构图、基本要求、内容提要、典型题解析、自测题及自测题解答等环节,不仅适合于普通高等院校理工类、经管类本科各专业的学生使用,还可以作为教学参考用书或考研辅导用书。
本教材是在多年教学实践的基础上、参照*关于全国非数学专业(经济管理类)硕士研究生考试数学(三)对线性代数部分的基本要求编写的,可作为高等学校经济管理类各专业学生的线性代数教材。全书共分5章,章介绍了行列式的概念、性质以及行列式的计算方法;第二章介绍了矩阵这一重要工具,讨论了矩阵的运算、矩阵的初等变换和矩阵的秩;第三章以矩阵为工具,讨论了线性方程组的解法和线性方程组解的结构;第四章介绍了矩阵的特征值和特征向量,并以矩阵的特征值和特征向量为工具研究了矩阵的对角化问题;第五章介绍了二次型概念、二次型化标准型和判断二次型为正定的方法。在内容的编写上,我们力求通俗易懂地介绍线性代数的基本理论和方法,用简单而有代表性的例题,使学生通过本教材的学习对线性代数的理论及方法有一个清楚的了解。针对线性
本书按照高等院校财经类专业的数学教学大纲和工学、经济学硕士研究生的数学考试大纲编写,在基本内容和习题的编排上都力争与这两个大纲相适应,这些内容包括行列式、矩阵运算、线性方程组、向量空间、特征值与特征向量及二次型等知识。 本书可作为高等院校财经类专业本科生的线性代数教材,也可作为学时相近的工科类专业本科生的教材或参考书。
本书是为了配合由高等教育出版社出版,同济大学应用数学系主编的《高等数学》(第六版 下册)的教材而编写的同步辅导用书。 本书按教材内容安排全书结构,各章均包括学习导引、知识要点及常考点、本节考研要求、题型、真题、方法、与课后习题全解五部分内容。全书按教材内容,针对各章节全部习题给出详细解答,思路清晰,逻辑性强,循序渐进地帮助读者分析并解决问题,内容详尽,简明易懂。 本书将是高等学校研究生、本科生的重要参考书。也是教材的参考用书,并可作为自学者的辅导书。
本书是一本数学趣题经典,是由Sam Loyd精心编撰,每道趣题都需要数学来解答谜题,有简单也有复杂,有些谜题是经过长时间古老漫长的时间形成的,具有浪漫色彩和神秘色彩,本书不仅具有趣味性还有很高的教学意义,通过学习找到乐趣,并通过乐趣加深学习。
本书由*考研中心数学阅卷组组长张天德老师主编,是针对由同济大学数学系主编的教材《线性代数(第六版)》的课后习题的习题详解书。 在解题过程中,本书对部分有代表性的、重点的题目设置了“思路探索”,以引导读者尽快找到解决问题的思路和方法;另有设置“方法点击”来帮助读者归纳解决问题的关键、技巧与规律。针对部分习题,本书还给出了一题多解,以培养读者的分析能力和发散思维的能力。
数数是一项基本的生活技能,它简单到连小孩子也能学会。但人们想不到的是,现在我们所用的灵活方便的计数方式是在近代才发展起来的;而在这之前,世界上的多种文化分別创造了多样的计数方式,十进制、六十进制便是其中著名的进制,且被沿用至今。计算机的出现,是计数方式上的又一大变革,或者说新的计数方式促进了计算机技术的发展。这一切都要归功于莱布尼茨发明的二进制。数的概念和计数方式一样也在不断变化着。数是什么?我们没有的答案,因为数系一直在变化中。自然数、整数、有理数、无理数、实数、虚数、超越数、超限数,每一次数的家族的扩张,都能引发更深层次的思考,也都留下了悬而未决的问题。可见对数的认识,我们还有很长的路要走。
本书分上、下两册。上册内容包括函数、极限与连续、导数与微分、导数的应用、不定积分、定积分及其应用和空间解析几何。下册内容包括多元函数及其微分法、重积分、曲线积分与曲面积分、无穷级数、常微分方程及附录“数学史料”。 为适应不同专业的需要。书中适量配置了一些标有*的内容。以供选学。 本书作为大学专科和高等专科学校各专业的教材。也可供工程技术人员参考。
本书是《离散数学导论(第3版)》(高等教育出版社2004年出版,徐洁磐编著)一书配套的教辅用书。全书针对教材各章的教学重点内容对读者进行辅导,除对各章习题进行分析与解答之外,同时又增加了大量教材中没有的习题,并给出解答。全书包括集合论初步、关系、函数、有限集与无限集、代数系统、图论、数理逻辑等七章内容,每章均由主要内容、复习重点、基本概念及注意事项、典型例题详细分析、相关教材中习题及解答、另增配套习题及解答六大部分组成。 本书除与《离散数学导论(第3版)》教材配套使用之外,也可独立用作离散数学课程的教学参考书,可供高等学校计算机及相关专业的学生使用。
本书是高职高专院校工科类与经济类数学教学辅导用书,适应于我国高等职业教育。为了适应高等职业教育的教学改革和发展,满足高等教育高等数学课堂上“教、学、做”一体化的
数学分析是大学数学系的必修课,也是理工科高等数学的主要组成部分,更是研究生考试的必考内容。关于数学分析,富盛名习题,莫过于前苏联数学家,鲍里斯帕夫罗维奇 吉米多维奇编写的《数学分析习题集》。但是在相当长的一段时间之内,这套书只有题目,并无标准解法,直到20世纪八十年代初由我国著名数学家费定晖,周学圣等人将其全部解出,并且反复演算,终集结成册,由山东科学技术出版社出版,这就是在数学界大名鼎鼎的《1.Б.П.吉米多维奇数学分析习题集》。从《吉米多维奇数学分析习题集》到《吉米多维奇数学分析习题集题解》虽然两字之差,但是包含了一代数学大师们无数的心血。 直至1977年吉米多维奇去世,全套题集共计4462道,由浅入深的涵盖了数学分析题目的全部变化形式,部分习题难度很大,因此无论是自学、提高还是考研,这本书