《怎样解题:数学思维的新方法》是靠前有名数学家波利亚论述中学数学教学法的普及名著,对数学教育产生了深刻的影响。波利亚认为中学数学教育的根本宗旨是教会年轻人思考,他把“解题”作为培养学生数学才能和教会他们思考的一种手段和途径。《怎样解题:数学思维的新方法》是他专门研究解题的思维过程后的结晶。《怎样解题:数学思维的新方法》的核心是他分解解题的思维过程得到的一张“怎样解题”表。作者在书中引导学生按照“表”中的问题和建议思考问题,探索解题途径,进而逐步掌握解题过程的一般规律。书中还有一部“探索法小词典”,对解题过程中典型有用的智力活动做进一步解释。
《费马大定理:一个困惑了世间智者358年的谜》是关于一个困惑了世间智者358年的谜题的传奇。《费马大定理:一个困惑了世间智者358年的谜》既有振奋人心的故事讲述方式,也有引人入胜的科学发现的历史。西蒙·辛格讲述了一个英国人,经过数年秘密辛苦的工作,终于解决了挑战性的数学问题的艰辛旅程。
数学是一门领域非常广阔、内容极为丰富、系统十分庞大的学科, 是人类认识客观世界的一个重要工具, 是各门科学所不可缺少的一件强有力的武器。本书集知识性、思想性为一体, 说理直观浅显,通俗易懂, 充分展示数学之美。读者也会从其中得到不同的乐趣和益处,有助于开阔眼界、增长知识、锻炼逻辑思维能力。本书为探索与发现丛书之一。
本书围绕微观的数学主方法论和宏观的数学方法论分别对波利亚的数学启发法、数学发现的的逻辑与关系映射反演方法、数学抽象的主法与抽象度分析法、数学美与数学直觉、数学活动论与数学文化论等主题进行了论述。书中不仅较为集中地反映了外的数学方法论研究上的成果,而且也包括作者若干独立的研究与数学实践活动、特别是与数学教学的密切结合,并体现了数学方法论与数学哲学、数学史研究互相结合重要特点。
所有人在日常生活中都会接触到数学问题,多数人却又对之心存畏惧。在《数学》这本极为易读又充满趣味的小书中,蒂莫西?高尔斯解释了高等数学与我们在中小学所学的数学知识之间的一些最为根本的、主要是哲学性的区别,让我们能更好地理解那些听起来带有悖论的概念,比如“无限”“弯曲空间”“虚数”等。从基本的观念,到哲学探究,再到与数学共同体相关的一般社会学问题,本书揭开了空间和数的神秘面纱之一角。
本书是奥博丛书之一。 本书是数学解题研究方面的专著,介绍了解题基础知识和解题理论。 这套奥博丛书,其中就有若干或许可以称为解题秘籍。当然,得到它之后,要成为解题高手,还得注意: 一、勤加练习,因为解题是实践性的技能,只能通过模仿和实践来学到它。 二、循序渐进,孔子说:“欲速则不达。”不能操之过急,一个问题或一种方法,弄清楚了,再往下看,切忌囫囵吞枣,食而不化。 三、不要迷信书本,“尽信书,则不如无书。”要成为真正的高手,不能依赖秘籍,而要自创新招。