《费马大定理:一个困惑了世间智者358年的谜》是关于一个困惑了世间智者358年的谜题的传奇。《费马大定理:一个困惑了世间智者358年的谜》既有振奋人心的故事讲述方式,也有引人入胜的科学发现的历史。西蒙·辛格讲述了一个英国人,经过数年秘密辛苦的工作,终于解决了挑战性的数学问题的艰辛旅程。
《数学与人文》丛书第四辑将继续着力贯彻“让数学成为国人文化的一部分”的宗旨,展示数学丰富多彩的方面。《女性与数学》主题栏目“数坛巾帼”,通过部分女数学家的评传,以历史实例来引发对“女性与数学”这一社会课题的思考。特别是,本专栏刊登了两位活跃在现代数学前沿的女数学家的访谈录,她们的成长经历会引起读者的兴趣。 本辑“数海钩沉”栏目刊发丘成桐先生“清末与日本明治维新时期数学人才引进之比较”,以史为鉴,发人深省;“数学星空”栏目特约文章冯端院士“纪念冯康院士诞辰90周年”,真切感人;新辟栏目“数学人生”,刊数学家们探求真理的人生感悟与经验之谈,本辑特载国家科技奖获得者谷超豪先生激励人心的讲演“请勿歌仰止,雄峰正相迎”;“数学家诗词”栏目,为数学家开辟发表诗作的园地;“数学之旅”栏目,发
本书是MATLAB数学建模应用系列书籍之一,以MATLAB R2016a软件版本为基础,根据数学建模的需要编写,包含了多种数学建模问题的MATLAB求解方法,是解决数学实验和数学建模的有力工具。全书共18章,分为前后两个部分,~10章属于前部分,1~18章属于后部分。前部分从MATLAB基础和数学建模基础知识介绍开始,详细介绍MATLAB程序设计、常用MATLAB建模函数、数学规划模型、智能优化算法、Simulink简介、MATLAB图像处理算法等内容; 后部分介绍了水质评价与预测、投资收益与风险、旅行商问题、很优捕鱼策略、裁剪与复原、DNA序列分类、卫星和飞船的跟踪测控、中国人口增长预测等8个典型建模问题的MATLAB求解方法,引导读者深入挖掘各种建模问题背后的数学问题和求解方法。很后,在附录中给出了MATLAB基本命令的介绍,便于读者使用和研究。本书以MATLAB数学建模基础为主线,结
《数学真有趣:3分钟学会玩数学》内容简介:数学,一旦领会,可远比魔术、游戏有趣。它不仅能够塑造灵活的思考方式,更能帮助你化繁为简、洞察事物本质,迅速分析出核心问题。在你看完《数学真有趣:3分钟学会玩数学》后,你不仅能解开那些精心设计的问题,同时还能有效锻炼思考技能,享受轻松玩数学的乐趣。
一个好的数学问题不仅蕴含着深刻的数学思想和精妙的思维技巧,而且在解决该问题的过程中能产生新的观念和理论,促进数学的发展。为了进一步拓宽广大中学生和大学低年级学生的数学视野,丰富他们的数学史知识,激发他们学习和探索数学的热情,特精心选择了这100个基本的数学问题供读者赏析。这些数学问题其实并不“基本”,它们大多是一些数学中的名题和难题,在历史上受到许多大数学家的青睐,堪称数学中的宝石和明珠,其“基本性”主要表现在叙述上的简明易懂或证明方法之初等巧妙。
维恩图具有一系列迷人的特性,如今,它已在商业策略、创意表达、医学研究、计算机科学和理论物理学等形形色色的领域里获得了广泛的应用。基本的维恩图不仅简洁优美——由三个交叠的圆相互交叉形成八个不同的区域——而且也给我们带来了概念上的革新。由英国逻辑学家约翰·维恩设计的维恩图,在视觉上体现了复杂的逻辑学命题和代数陈述,美不胜收。雅俗共赏。本书讲述了维恩图引人入胜的发展史,人们对它的接受过程和研究的进展,以及该图形出现在基督圣像、网球和一些旗帜上的具体例子。爱德华兹不但根据历史再现了一些著名的维恩图,同时也展现了如何能把不同的形状拼接起来,从而形成在艺术上绚丽夺目、在数学上至关重要的多集合维恩图。其中包括作者自己创建的、颇有影响的“阿德莱德图”变种。
根据两种事物在某些特征上的相似。做出它们在其他特征上也可能相似的结论,这种推理的方法称为类比。类比是一种生动活泼、极富有创造性的思维方法。本书通过一些典型的实例向读者介绍它们的结果以及获得这些结果的思维过程,以帮助读者熟悉这种十分有用的数学方法,激发大家创新的情趣。
变换是数学奥林匹克竞赛中的重要内容。它灵活多变,耐人寻味。从初等数学到高等的、近代的数学都离不开变换。特别是近年来, 外数学竞赛中,有不少内容涉及变换。本书谈初等数学又不局限于初等数学,着重讲了两个问题:一个是变换的迭代,一个是变换的磨光性质。 作者长期从事 数学奥林匹克(IM0)竞赛的教练工作,既有深厚的数学功底,又有丰富的临场经验。本书深入浅出,高屋建瓴,笔墨酣畅,是中学生了解变换的理想读物。
本书是奥博丛书之一。 本书是数学解题研究方面的专著,介绍了解题基础知识和解题理论。 这套奥博丛书,其中就有若干或许可以称为解题秘籍。当然,得到它之后,要成为解题高手,还得注意: 一、勤加练习,因为解题是实践性的技能,只能通过模仿和实践来学到它。 二、循序渐进,孔子说:“欲速则不达。”不能操之过急,一个问题或一种方法,弄清楚了,再往下看,切忌囫囵吞枣,食而不化。 三、不要迷信书本,“尽信书,则不如无书。”要成为真正的高手,不能依赖秘籍,而要自创新招。
数数是一项基本的生活技能,它简单到连小孩子也能学会。但人们想不到的是,现在我们所用的灵活方便的计数方式是在近代才发展起来的;而在这之前,世界上的多种文化分別创造了多样的计数方式,十进制、六十进制便是其中著名的进制,且被沿用至今。计算机的出现,是计数方式上的又一大变革,或者说新的计数方式促进了计算机技术的发展。这一切都要归功于莱布尼茨发明的二进制。数的概念和计数方式一样也在不断变化着。数是什么?我们没有的答案,因为数系一直在变化中。自然数、整数、有理数、无理数、实数、虚数、超越数、超限数,每一次数的家族的扩张,都能引发更深层次的思考,也都留下了悬而未决的问题。可见对数的认识,我们还有很长的路要走。
作者简介: 格奥尔格 康托,伟大的德国数学家,集合论创始人。 译者简介: 陈杰(已故),北京大学数学系毕业,原内蒙古大学数学系教授,曾任系主任、内蒙古大学校长。研究方向泛函分析,集合论。 刘晓力,中国人民大学教授,内蒙古大学数学系研究生,北京大学哲学博士,研究方向为科学哲学、逻辑哲学、哥德尔思想、认知科学哲学。主持过 哥德尔思想研究 国家社科基金项目,出版《理性的生命 哥德尔思想研究》,获*人文社科类成果二等奖。翻译《逻辑人生 哥德尔传》、正在参与《哥德尔文集》5卷本翻译(商务印书馆选题计划)。目前主持国家社科基金重大项目 认知科学对当代哲学的挑战 。现任中国逻辑学会副会长、科学哲学专业委员会理事长、数学哲学专业委员会主任。
1637年,费马给出了一个命题,这个看似简单的猜想,一代代数学家们煞费苦心仍无法证明,直到1994年才被英国数学家怀尔斯彻底解决。本书介绍了这358年间发生的一些生动的故事以及给予我们的启示。
本书系统地论述广义逆矩阵的理论、方法和应用。全书共分十章。章引进了广义逆矩阵的定义,介绍了历史发展概况。第二章从适于本书讨论的角度概述了矩阵论中的若干预备知识。接下来的六章系统地讨论了由Moore-Penrose方程所定义的各种广义逆的性质、不等式、计算方法及一些直接应用。后两章介绍广义逆在概率统计、数学规划、数值计算和网络理论等学科的应用。书后附有百余篇参考文献。 本书读者对象为高等院校数学、物理、工程、经济等有关专业的教师、高年级学生和研究生,也可供所有使用矩阵这一数学工具的广大科技工作者阅读.
回顾高斯的一生,走近高斯,可以看到他不仅仅是一位数学大师,而且是一个在天文学、物理学、测地学、地磁学等领域作出重大贡献的出类拔萃的科学巨人;高斯的令人崇敬,主要并不在于他是一个天才,而在于他一生的刻苦勤奋,在于他做到了很少有人能够做到的将理论、应用和发明完美地结合。
本书运用类似的方法来研究数学,而书中大师们创造的不是小说或交响乐,而是定理。因此,本书不是一本典型的数学教材,没有一步一步地推导某些数学分支的发展,也没有强调数学在确定行星运行轨道、理解计算机世界,乃至结算支票等方面的应用。当然,数学在这些应用领域取得了惊人的成就,但并非这些世俗功利促使欧几里得、阿基米德或乔治·康托为数学殚精竭虑,终生不悔。他们并不认为应借功利目的为自己的工作辩解,正如莎士比亚不必解释他何以要写十四行诗,而没有写菜谱,或凡高何以要画油画,而没有画广告画一样。 我将在本书中从数学史的角度来探讨某些重要的证明和精巧的逻辑推理,并重点阐述这些定理为什么意义深远,以及数学家们是如何彻底地解决了这些紧迫的逻辑问题的。本书的每一章都包含了三个基本组成部分: 部分是历