全书遵循高等教育规律,突出高等职业教育的特点,注重对学生数学素养和应用能力的培养,体现数学建模思想。全书分为上、下两册共10章,内容包括:函数、极限与连续、导数的应用、一元函数的积分学、微分方程、向量代数与空间解析几何、多元函数微积分和无穷级数等。教材每章后附有历史的回顾与评述,主要介绍数学发展史与相关数学大师。本书对于所涉及的若干定理、推论、命题等,既不追求详细的证明过程,又不失数学理论的严谨;注重将数学建模思想融入到教学中;结合数学软件,培养学生处理数据以及求解数学模型的能力。与本书配套的辅助教材有《高等数学练习册》、《高等数学学习指导》。
针对当前高等数学教学的现状分析,《高等数学的教学改革策略研究》一书应需而生。本书主要围绕高等数学的教学思想改革策略研究、高等数学的教学内容改革策略研究、高等数学的教学主体改革策略研究、高等数学的教学目标改革策略研究、高等数学的教学方法改革策略研究、高等数学的教学模式改革策略研究、高等数学的教学评价改革策略研究、高等数学的教学实践改革策略研究等内容进行了阐述,以期通过本书的分析研究,能够对高等数学的教学改革有所助益。
本书是普通高等教育“十一五”规划教材《高等数学(一)微积分》(第2版)和《高等数学(二)线性代数、概率统计》(第2版)的配套辅导书。全书分两部分,共十二章。部分共六章,内容包括:函数、极限、连续,一元函数微分学,一元函数积分学,多元函数微积分,无穷级数,常微分方程。第二部分共六章,内容包括:行列式,矩阵,线性方程组,事件及其概率,变量及其分布,数理统计基础。书中给出了教材中所有习题的分析与解答,并针对目前参加自学考试考生的实际需要,适当增加了选择、填空等其他题型的习题。 本书可以作为普通高等学校经济管理类各个专业的学生以及参加全国高等教育自学考试的考生学习微积分、线性代数、概率论与数理统计课程的教材和参考书,也可以满足成人高等教育以及高等职业教育各个专业的学生学习相关课程教学辅导的需
高等数学的重要性不言而喻。由于高等数学理论上的高度抽象性、逻辑上的高度严密性以及内容上的博大系统性,使得初学者在有限的学时内难以理解接受。正因于此,对初学高等数学的同学来说,往往听讲时抓不住重点,课后不知如何去解题,所以希望能有一本令他们满意的参考书,帮助他们尽快地突破难点、抓住重点,牢固地掌握基本知识,且在此基础上,学会并掌握较为系统的解题方法。为了满足同学们的上述愿望,我们总结了三十多年从事高等数学教学的经验,编写了这本《高等数学重点难点100讲》。 本书的特点是:一、突出重点难点。全书将高等数学从函数、极限、连续、一元微积分、向量代数、空间解析几何到多元微积分、级数及微分方程各个章节中的重要的、难以理解掌握的知识点一一抽取出来,从多角度进行详细的讲解与讨论,起到化难为易
数理逻辑是计算机科学的基础之一,在模型与系统的规约与验证等方面有着广泛的应用。随着当今软硬件产品日趋复杂,数理逻辑已经成为越来越多设计开发人员的日常工具。 本书适合作为高等院校计算机及相关专业的数理逻辑/形式化方法课程教材,涵盖了命题逻辑,谓词逻辑、模态逻辑与 Agent、二元决策图、模型检查和程序验证等内容。与传统数理逻辑教科书相比,它的主要特色就是紧紧围绕软硬件规约和验证这一主题,反映了计算机科学中数理逻辑的新发展和实际需要。第2版新增了可满足性算法,紧致性理论和Lowenhenm-Skolem定理,并介绍了Alloy语言和Nusmv工具。 本书自出版以来受到广泛好评,已经被包括美国普林斯顿大学、卡内基-梅隆大学、英国大学、德国汉堡大学、加拿大多伦多大学、荷兰 Vrije大学,印度理工学院在内的多个国家几十所高校采纳为教
高等数学是高等职业院校学生的一门必修课,其思想和方法广泛应用于科学技术、社会经济等领域,对学生的专业学习、能力提高和职业发展有着极其重要的作用。 本书的编写遵循高等职业教育“以服务为宗旨,以就业为导向,走产学结合发展道路”的办学指导思想,本着“以应用为目的,以能力培养为目标”的教学原则,强调数学概念与实际问题的联系,提高学生的实践能力和创新精神。 教材内容共十章,包括函数、极限与连续、一元函数微分学、一元函数积分学、常微分方程、二元函数微分学、二元函数积分学、无穷级数、拉普拉斯变换、行列式与矩阵。全书建议讲授120—140学时(其中全书的应用与实践部分建议有选择地讲授20~30学时)。本书适用于高等职业院校机械工程专业、汽车 工程专业、电子电气工程专业、建筑工程专业、计算机专业等专业基础公共课
《高等代数选讲》是编者刘丽在多年从事“高等代数”及“高等代数选讲”教学的基础上编写的一本辅导材料。全书共分11章,内容包括行列式、矩阵、 n维向量、线性方程组、多项式、相似矩阵、二次型、线性空间、线性变换、欧几里得空间、λ-矩阵等。每章内容均按教学要求、知识要点、典型例题、同步练习及参考答案5部分编写。在编写时,力求对内容进行概括性阐述,对例题进行分类讲解,对一些典型例题或具体的解题方法,多加以分析或评注;内容及例题安排上,由浅入深,便于教师教学和学生自学。 本书可作为数学类专业硕士研究生入学考试教材或复习指导书,也可作为理工科、经济管理类学生学习“高等代数”与“线性代数”的参考书,同时还可供教授“高等代数”与“线性代数”的教师参考。
《大学数学竞赛辅导及真题详解》依据非数学类专业全国大学生数学竞赛考试大纲年制定编写而成,共分五个部分。部分为考纲解析,通过具体实例突出大纲对基本概念、基本性质及基本运算等基础能力的培养与训练第二部分为专题讲座,主要围绕考试大纲中的难点和疑点以及学习过程中的突出问题,为学生排忧解难第三部分为强化提高,主要包含来自国内外大学生数学竞赛的一些特色试题,其构思巧妙、方法灵活、技巧性强,有利于提高学生参与竞赛的实战能力第四部分为全真试题,包含从~年全国大学生数学竞赛的预赛和决赛共套真题及其解析,学生在复习过程中可以对照试题解析,有目的地寻找存在的问题,从而大幅度提高应考水平;第五部分为模拟试题,包含套模拟试题及解答,考生可藉此作一次全面自检自查,并适应数学竞赛的测试场景 本书可供
《高等数学(第3版)/21世纪高校教材》共分九章,包括函数与向量、极限与连续、导数与微分、中值定理与导数的应用、定积分与不定积分、二重积分与曲线积分、微分方程、无穷级数、概率论基础. 《高等数学(第3版)/21世纪高校教材》每章配套习题与习题课结合使用,辅以复习题训练,目的是帮助读者理解、消化和复习教材主体内容,编写中注重培养学生良好的科学思维习惯及实际应用能力. 《高等数学(第3版)/21世纪高校教材》适用于应用型高等院校理工类和经济类各专业的公共数学课教学,也可供高等数学授课教师作为教参使用,以及提供给学生作考研辅导和竞赛指导使用.
刘吉佑、赵新超、陈秀卿、钱江编写的《高等数学解题法》目的是为读者学习高等数学、提高解题技能和熟练程度提供帮助。全书收录的题目比较典型,也有难度,总共归结为二十九讲。内容包括预备知识、极限与连续、一元函数微分学、一元函数积分学、多元函数微分学、多元函数积分学、无穷级数、常微分方程等。每一讲分为内容要点、例题选讲、练习题和答案与提示四个模块。例题选讲给出了比较详细的解答或证明,而练习题则只给出答案或提示,以便给读者留有充分的发挥空间。对于一些特别需要引起读者重视的解题方法或解题思路,书中加以“评注”。本书内容覆盖了理工科大学高等数学课程的基本要求和国家研究生数学入学考试的基本要求。《高等数学解题法》可作为“高等数学解题法”课程的教材和学生学习高等数学的参考书,也可作为参加硕士研
本书是为了配合由高等教育出版社出版,同济大学应用数学系主编的《高等数学》(第六版 下册)的教材而编写的同步辅导用书。 本书按教材内容安排全书结构,各章均包括学习导引、知识要点及常考点、本节考研要求、题型、真题、方法、与课后习题全解五部分内容。全书按教材内容,针对各章节全部习题给出详细解答,思路清晰,逻辑性强,循序渐进地帮助读者分析并解决问题,内容详尽,简明易懂。 本书将是高等学校研究生、本科生的重要参考书。也是教材的参考用书,并可作为自学者的辅导书。
明德学院数学教研室编的《高等数学作业集(上共2册)》为适应应用型本科人才的培养要求而编写,分为A、B两册.本册为A册,内容涉及函数与极限(函数,初等函数,数列的极限,函数的极限,无穷小与无穷大)、导数与微分(导数概念,函数的和、差、积、商的求导法则,反函数的导数,复合函数的求导法则,初等函数的求导问题)、中值定理与导数的应用(中值定理,洛必达法则,函数的极值及其求法, 值、 小值问题,曲线的凹凸与拐点)、不定积分(不定积分的概念与性质,换元积分法)、定积分(定积分的换元法,定积分的分部积分法)、空间解析几何与向量代数(空间直角坐标系,向量及其加减法、向量与数的乘法,向量的坐标,数量积,向量积,曲面及其方程,空间曲线及其方程),此外,附录中还给出了习题的参考答案。
本书适用于应用型高等院校所有专业的学生使用。书中汇集了一元函数微积分学(极限、导数、不定积分、定积分)这‘基础模块中的基本练习,还精选了常微分方程、空间解析几何、多元函数微积分、级数和线性代数这六个应用模块的相关练习。