本书系统介绍数学建模的理论及应用,作者将数学建模的过程归结为五个步骤(即“五步方法”),并贯穿全书各类问题的分析和讨论中。本书阐述了如何使用数学模型来解决实际问题,提出了在组建数学模型并且求解得到结论之后如何进行灵敏性和稳健性分析。此外,将数学建模方法与计算机的使用密切结合,不仅通过对每个问题的讨论给了很好的示范,而且配备了大量的习题。
本书根据J. R. 曼克勒斯先生所著的Analysis on Manifolds一书译出。原书禀承了作者一贯的写作风格,论述精辟,深入浅出。主要内容包括:第一章复习并扩充了全书所需要的代数与拓扑知识;第二至四章系统论述了n维欧氏空间中的多元微积分,这是对普通数学分析的推广与提高,也是为流形上的分析做准备;第五至八章系统论述流形上的分析,其中包括一般Stokes定理和de Rham上同调等内容。此外,为便于初学者理解与接受,本书采用将流形嵌入高维欧氏空间中的观点讲述,故而又在第九章给出了抽象流形的概念并简要介绍了一般可微流形和Riemann流形。
在物理学、化学、生物学、经济学及各种工程问题中提出的大量反应扩散问题,日益受到人们的重视。本书详细阐述了与这些问题有关的数学理论、方法及其应用,论证严谨,深入浅出,有一定的自封性,能把读者较快地带到反应扩散方程各种问题的研究中去。每章末附有大量习题,有助于读者深入理解本书的内容。
本书介绍了现代数值近似技术的理论及实用知识,解释了它们的工作原理。同它的前几个版本一样,该书仍将重点放在近似技术的数值分析上,以便为读者今后的学习打下坚实的数值分析与科学计算基础。本书内容丰富、翔实,可以根据不同的学习对象和学习目的,选择、组织、串联相应的章节,形成侧重于理论或是侧重于实用的两种学习策略。书中的每个概念均以大量的例子说明,同时书中还包含2000多个习题,范围从方法、算法的基本应用到理论的归纳与扩展,涉及物理、计算机、生物、社会科学等多个不同的领域。通过这些实例,进一步说明在现实世界中,数值方法是如何被应用的。第七版新增了两个突出的部分,一是前承条件共轭梯度方法,为线性方程系统提供了更完备的解决方法;另一部分是同伦与连续方法,为非线性方程系统的近似求解提供了不同的方
hepresentbookiasedonlecturesgivenbytheauthorattheUniversityofTokyoduringthepasttenyears.ItisintendedasatextbooktobestudiedbystudentsontheirownortobeusedinacourseonFunctionalAnalysis,i.e.,thegeneraltheoryoflinearoperatorsinfunctionspacestogetherwithsalientfeaturesofitsapplicationtodiversefieldsofmodemandclassicalanalysis.Necessaryprerequisitesforthereadingofthiookaresummarized,withorwithoutproof,inChapter0undertitles:SetTheory,TopologicalSpaces,MeasureSpacesandLinearSpaces.Then,startingwiththechapteronSemi-norms,ageneraltheoryofBanachandHilbertspacesispresentedinconnectionwiththetheoryofgeneralizedfunctionsofS.L.SOBOLEVandL.SCHWARTZ.Whilethebookisprimarilyaddressedtograduatestudents,itishopeditmightproveusefultoresearchmathematicians,bothpureandapplied.Thereadermaypass,e.g.,fromChapterIX(AnalyticalTheory.ofSemi-groups)directlytoChapterXIII(ErgodicTheoryandDiffusionTheory)andtoChapterXIV(IntegrationoftheEquationofEvolution).Suchmaterialsas"WeakTopologiesandDualityinLocallyConvexSpaces"and"NuclearSpaces"areprese
本书阐述现代科学与工程计算中各种常用算法的基础知识与编程实现方法,内容包括设计数值算法的原则、非线性方程的数值解法、线性方程组的直接法与迭代法、函数插值法与昀小二乘拟合法、数值积分法与数值微分法、常微分方程初值问题的数值解法、矩阵特征值与特征向量计算的数值方法等。每章首先阐述基础知识要点,其次给出相应算法的详细描述,然后通过例题给出实现算法的完整程序与运行结果,最后在结尾部分针对介绍的算法配备了丰富的编程计算习题。附录中给出了全部习题的参考答案。
《Ь.П.吉米多维奇数学分析习题集题解》自1979年出版发行以来,历经30多个春秋,一直畅销不衰,深得读者厚爱。读者通过学习该书,对掌握数学分析的基本知识、基础理论和基本技能的训练,感到获益匪浅,赞誉
比较系统地对无穷级数在数学中所起的技术工具作用与连分数解析理论构造闵可夫斯基(Minkowski)函数及将其开拓到复数域上作了介绍。特别较为无穷发散级数的几种和性结合实际地作了论述和论证。当然这是《无穷级数与连分数》在数学思想方面的体现。 《无穷级数与连分数》章主要介绍无穷收敛级数在经典与近代数学中的技术工具作用,第二章主要介绍无穷发散级数作为某些函数的渐进级数作相应的数值计算与求微分方程的数值解。同时不同程度地阐明了对无穷发散级数的几种可和性方法。第三章论述连分数与无穷级数的关系及连分数的解析理论。第四章应用其连分数的解析理论,特别是Denjoy引理构造了闵可夫斯基函数,而这个函数具有明显的特征,顺便将其解析开拓到复平面的某个区域内,给出最普遍的表示形式。
本书内容概括了《数学分析》的全部命题,但该书习题数量多,许多题目在题型和解题方法上具有相似之处,同时该书难题多,许多题目的难度超出对同学们的要求。为了帮助广大同学更好地掌握《数学分析》的基本概念,综合运用各种解题技巧和方法,提高分析问题和解决问题的能力,我们从吉米多维奇的《数学分析习题集》中选择了一部分习题进行汇编。这些习题涉及内容广、题型多,基础性题目从多个角度帮助广大同学理解相应的基本概念和基本理论,帮助同学掌握基本解题方法;而那些层次性较高的题目,涉及的内容多,技巧性强,掌握这些题目的解题方法,可以使广大同学举一反三,触类旁通,开拓解题思路,更好地掌握《数学分析》的基本内容和解题方法。
数学分析是大学数学系的必修课,也是理工科高等数学的主要组成部分,更是研究生考试的必考内容。关于数学分析,很富盛名习题,莫过于苏联数学家,鲍里斯帕夫罗维奇 吉米多维奇编写的《数学分析习题集》。但是在相当
《泛函分析》(原书第2版)是泛函数分析的经典教材,作为Rudin的分析学经典著作之一,《泛函分析》(原书第2版)秉承了内容精练、结构清晰的特点。第2版新增的内容有Kakutani不动点定理,Lamonosov不变子空间定理以及遍历定理等,另外,还适当增加了一些例子和习题。