Andalloftheaboveisabasisformodeling.Modelingiswhatbringsthesubjecttolifeandmakestheideasrealforthestudents:Differentialequationscanmodelreal-lifequestions,andputercalculationsandgraphicscanthenprovidereal-lifeanswers.Thesymbiosisofthesyntheticandthecalculationalprovidesaricheducationalexperienceforstudents,anditpreparesthemformoreconcrete,appliedworkinfuturecourses.ThenewAnatomyofanApplicationsectionsinthiseditionshowcasesomerichapplicationsfromengineering,physics,andappliedscience.
本书用简练的文字,介绍了70位微积分的创立者及其先驱的简要经历、学术成就、治学态度、治学方法,概括性地论述了微积分的萌芽、创建、发展过程,其中还包含了一些科学家的名言和趣闻轶事。本书可以作为学习数学史的选讲教材,也是“高等数学”课程的一本教学参考书,既可供各类高等学校师生参考,又可供广大数学爱好者阅读。
关于孤子(也称孤立子)理论中双线性方程的研究,国际上十分活跃,本书主要介绍处理双线性方程的技巧“直接方法”。作者结合自己多年的研究成果,细致深入地阐述了求解非线性偏微分方程的解的过程,“广田方法”的要点,以及如何用Pfaff式统一显式表示多孤子解,由此提出了孤子方程可以看成Pfaff式恒等式的新观点。全书共分4章。章详细地描述“直接方法”的要点,以及用“直接方法”求解偏微分方程解的过程。第2章引入需要使用的数学工具,特别是行列式和Pfaff式理论,通过实例,深入浅出地介绍这些方面所涉及的技巧。第3章从直接方法的角度,讨论孤立子方程的数学结构。第4章详细讨论双线性Backlund变换。本书可供高等院校和科研机构的数学、物理、力学、光学等高年级大学生、研究生和教师阅读,也可供从事非线性科学、理论物理、数学物理和工
本书旨在介绍非线性微分方程研究的主要内容、典型方法和成果,其中包括作者近年的一些研究工作。本书系统地阐述了非线性常微分方程的基本理论、几何理论、稳定性理论、振动理论与分支理论等,还分别介绍了非线性泛函微分方程及非线性脉冲微分方程的相应理论。本书致力于核心概念的引入、基本定理的阐述、思想方法的揭示,以及非线性微分方程在现代科技领域中的应用。本书可作为高等院校数学系、应用数学系及控制、管理、工程、医学等专业的大学生、研究生的教材或参考书,也可供相关教师及科研人员参考。