《浙江省污染源自动监控系统运行与管理》共6章,系统介绍了污染源自动监控工作人员应知应会的基础知识要点,强调理论联系实际,有助于基本工作能力的提升。 《浙江省污染源自动监控系统运行与管理》以政策法规为带领,以标准规范为基础,从污染源自动监控系统的建设、运维、监管、应用等方面,对实际工作经验进行了总结凝练,结合诸多经典案例进行实例分析,实用性较强,将为今后污染源自动监控工作提供重要参考。
《数林外传系列:向量复数与质点》主要论述用向量解决常见几何问题的方法,是基于向量相加的首尾衔接规则的回路法。全书共7章,从被人忽视的向量回路人手,介绍向量形式的定比分点公式和四边形中位线公式及其应用,对垂直问题、圆问题、三角形五心问题等作了专题研究;同时探讨了与向量法密切相关的复数法和质点法;对于不同解法之间的优劣,列举大量实例进行比较研究。 《数林外传系列:向量复数与质点》是在《绕来绕去的向量法》基础上进一步研究的成果,可供中学和大学的数学教师及理工科教师、中学生和大学生、数学爱好者以及数学教育研究者参考。
本书是作者结合多年的Python语言课程教学实践编写的。其内容包括:Python介绍、Python基础知识、Python程序设计、Python网络爬虫、Python高等数学、Python线性代数、Python概率统计、Python插值拟合与常微分方程求解及Python在数学建模中的应用共九章。书中配备了较多的实例,这些实例是学习Python与数学建模必须掌握的基本技能。 本书由浅入深、由易到难,既可作为在职教师学习Python的自学用书,也可作为数学建模培训班学生的培训。
《全国数学教师专著系列·数学解题与研究丛书:立体几何与组合》注重科学性、系统性和趣味性,全书共含34篇小文章,每篇文章各自独立成文,所以《全国数学教师专著系列·数学解题与研究丛书:立体几何与组合》可系统性地研读,也可有选择性地阅读。《全国数学教师专著系列·数学解题与研究丛书:立体几何与组合》可作为高三复习备考用书,也可供中学、师生及初等数学爱好者研读,或作为数学竞赛辅导资料和师范数学教法方面的。
《灾害与社会管理专家论坛丛书:防灾减灾与社会管理创新(2011)》是“灾害与社会管理专家论坛丛书”之一,包括:统筹规划有序推进加快社会保障制度建设;当前加强和创新社会管理面临的十大问题;关于未来国家综合防灾减灾战略理念、原则与战略目标的断想;社会管理在创新中追求卓越;青海东部自然灾害及发展态势;我国防汛抗旱减灾与管理;直面灾害——医学救援的时代特征与历史重任;国家综合防灾减灾的战略选择与基本思路等内容。
代数几何是数学中的一个重要分支,外很多著名的数学家都从事过对它的研究。本书从一道IM0试题的解法谈起,详细介绍了代数几何中的贝祖定理。全书共分五章,分别为:一道背景深刻的IM0试题、多项式的简单预备知识、代数几何中的贝祖定理的简单情形、射影空间中的交、代数几何、肖刚论代数几何。本书可供从事这一数学分支或相关学科的数学工作者、大学生以及数学爱好者研读。
《一般折线几何学》详细介绍了一般折线几何学的基础内容及性质,同时介绍了一般折线几何学在生活中的应用。《一般折线几何学》适合数学爱好者参考研读。《一般折线几何学》内容包括绪论;平面折线的基本性质;基本概念及初步分类;基本概念;初步分类;多边形;平面闭折线基本定理;边的折性:单折边与双折边;三种边的分布规律:折线基本定理;凸多边形基本概念;相交指数定理;闭折线的顶角和;折线复杂性的三项指标等等。
内容简介本书研究了反演变换及其性质、圆与反演变换、两圆的互反性等几何知识,系统地阐述了这些几何变换的理论和它们在几何证题方面的应用.本书写得简明扼要,通俗易懂,引人入胜,是中学生、低年级学生以及他们的教师和几何爱好者的一本很好的参考书.
本书探讨了三角形和圆形的几何结构,主要专注于欧氏理论的延伸并详细地研究了许多相关定理。在讨论的数百个定理和推论中,一些已经给出了完整的证明,另一些未证明的用以留作读者练习使用。本书适合大、中学师生及数学爱好者学习和收藏。
《原本》成书于公元前三百年左右,距离两千三百年,《原本》的作者是亚历山德拉的欧基里得(EuclidofAlexandria),他的生卒年根据推测大概是公元前330~260年,正是马其顿英主亚历山大开始发展势力,开创希腊化文化的初期。《原本》是一本数学著作,章节安排有着严谨的结构,全书由定义、公设、设准、命题(定理)、证明,以及符号和图像所构成,全书共十三卷。《原本》其实是欧基里得将古希腊数学集大成的著作,包括了希腊科学数学家:泰利斯、毕达哥拉斯、希波克拉提斯等人的成果。导读者翁秉仁教授认为《原本》之所以是经典,是因为欧基里得采用了非常特殊的编纂法,就是推理的方法或逻辑。欧基里得的原创性不是表现四百多个命题的叙述,因为许多命题在当时是已知的知识。欧基里得的天才表现在他有精准深刻的眼光,选择恰当的公设,又有惊人
拓扑学是数学的重要分支,内容丰富且研究途径众多,不少初学者视其为畏途。本书以点集拓扑学为基础,通过对一般拓扑学、拓扑动力系统、代数拓扑学、微分拓扑学中的一些专题论述,向读者简要介绍拓扑学中的一些基本知识、研究思想以及解决问题的方法,以较少的篇幅展现拓扑学中的一些精彩画卷。本书主要内容包括:集合与序集、拓扑空间、几类重要的拓扑性质、紧空间与度量空间、离散拓扑动力系统、基本群及其应用、流形的嵌入。本书可以作为数学类专业拓扑学课程的或教学参考书。