《拓扑学》(原书第2版)系统讲解拓扑学理论知识。在美国大学作为教材近20年,*近由原作者进行了全面更新。第1部分为一般拓扑学,讲述点集拓扑学的内容,介绍作为核心题材的集合论、拓扑空问、连通性、紧致性以及可数性公理和分离性公理;第二部分为代数拓扑学,讲述与拓扑学核心题材相关的主题,其中包括基本群和覆叠空问及其应用。 《拓扑学》(原书第2版)较大的特点在于概念引入自然,循序渐进。对于疑难的推理证明,将其分解为简化的步骤,不给读者留下疑惑。此外,书中还提供了大量练习,可以巩固加深学习的效果。严格的论证、清晰的条理、丰富的实例,让深奥的拓扑学变得轻松易学。
《几何原本(建立空间秩序最久远的方案之书全新修订本)》是古希腊数学家欧几里得的一部不朽著作。集古希腊数学的成果和精神于一书。 它既是数学巨著。又极富哲学精神。并第一次完成了人类对空间的认识。该书自问世之日起,在长达两千多年的时间里。历经多次翻译和修订。自1482年第一个印刷本出版,至今已有一千多种不同的版本。流传甚广。 《几何原本》(全新修订本)收录了原著13卷全部内容,包含了5条公理、5条公设、23个定义和467个命题。即先提出公理、公设和定义。再由简到繁予以证明。并在此基础上形成了欧氏几何学体系。欧几里得这一演绎推理,后来成了用以建立知识体系的严格方式。这种严格思维范式的确立。对人类知识发展和形成的影响尤为巨大。
欧几里得编著兰纪正、朱恩宽编译的《几何原本/汉译经典》是世界上、最完整且流传最广的数学著作,也是欧几里得最有价值的传世著作。欧几里得在本书中,系统地总结了泰勒斯、毕达哥拉斯及智者派等前代学者在实践和思考中获得的几何知识。欧几里得建立了定义和公理并研究各种几何图形的性质,从而确立了一套从公理、定义出发,论证命题得到定理的几何学论证方法,形成一个严密的逻辑体系——几何学。而本书也就成了欧氏几何的奠基之作,它的出现,对西方人的思维方式产生深刻的影响。
几何蕴含无穷魅力,本书汇其精华,充分展现其神奇、迷人、和谐、优雅之处,挖掘历代探寻者的成就、智慧和精神.本书共28章,紧扣现行初高中数学教材中的几何内容,并遵循其逻辑顺序,以教材为起点,进行挖掘、引申、拓展,探寻知识的发生、发展过程及纵横联系,了解知识背后的故事及人文精神,开发新的知识生长点.促进“ ”倡导的“综合与实践”、探究性学习和跨学科学习.认识数学的科学价值、应用价值、文化价值和审美价值.本书适合中学生课外阅读,也适合中学数学教师、数学教育工作者和大学数学专业师生参考.
《几何原本(建立空间秩序 久远的方案之书全新修订本)》是古希腊数学家欧几里得的一部不朽著作。集古希腊数学的成果和精神于一书。 它既是数学巨著。又极富哲学精神。并 次完成了人类对空间的认识。该书自问世之日起,在长达两千多年的时间里。历经多次翻译和修订。自1482年 个印刷本出版,至今已有一千多种不同的版本。流传甚广。 《几何原本》(全新修订本)收录了原著13卷全部内容,包含了5条公理、5条公设、23个定义和467个命题。即先提出公理、公设和定义。再由简到繁予以证明。并在此基础上形成了欧氏几何学体系。欧几里得这一演绎推理,后来成了用以建立知识体系的严格方式。这种严格思维范式的确立。对人类知识发展和形成的影响尤为巨大。
本书所研究的几何变换仅限于平面上的合同变换、相似变换和反演变换这三类初等几何变换;本书系统地阐述了这三类几何变换的理论和它们在几何证题方面的应用。阅读本书只需要具有中学数学知识即可;对于阅读几何变换理论有困难的读者,也可以只阅读与几何证题有关的章节。 本书适合大中师生及数学爱好者使用。
《数学思想方法(第2版)》共十三章,分为三个部分。主要介绍数学思想方法的两个源头、数学思想方法的几次突破、数学的真理性以及现代数学的发展趋势.对于了解现代数学观、确立现代数学教学观颇有帮助。中篇分别对数学教学中常用的抽象与概括、猜想与反驳、演绎与化归、计算与算法、应用与建模,以及分类、数形结合、特殊化等数学思想方法进行了比较详细的介绍,旨在让学员能较好地掌握这些重要的数学思想方法。下篇主要阐述了数学思想方法与素质教育之关系、数学思想方法教学的主要阶段及其原则。
本书是复流形的一大经典(全英文版),也是陈省身先生的著作之一。该书是1995年版复流形理论第2版的修订版。《复流形(第2版)》以作者在California大学的讲义和Canadian数学学会的研讨班为蓝本,全面地讲述复流形理论在代数几何、复函数理论、微分算子等理论中的重要作用。《复流形(第2版)》的优选特点是复流形理论的微分几何方法是在S.-S.Chern著作的影响下发展起来的,作为第2版对该理论的引入和表示很完美,被众多数学界的学者、专家所引用,是学习Riemann几何的一本理想参考书。
《几何原本(建立空间秩序最久远的方案之书全新修订本)》是古希腊数学家欧几里得的一部不朽著作。集古希腊数学的成果和精神于一书。 它既是数学巨著。又极富哲学精神。并第一次完成了人类对空间的认识。该书自问世之日起,在长达两千多年的时间里。历经多次翻译和修订。自1482年第一个印刷本出版,至今已有一千多种不同的版本。流传甚广。 《几何原本》(全新修订本)收录了原著13卷全部内容,包含了5条公理、5条公设、23个定义和467个命题。即先提出公理、公设和定义。再由简到繁予以证明。并在此基础上形成了欧氏几何学体系。欧几里得这一演绎推理,后来成了用以建立知识体系的严格方式。这种严格思维范式的确立。对人类知识发展和形成的影响尤为巨大。
该书是一本关于光滑流形理论的导论性研究生教材,旨在让学生们熟悉掌握将流形用在数学和科研工作中需要的工具,比如光滑结构、切向量和余向量、向量丛、陷入和嵌入的子流形、张量、微分形式、de Rham上同调、向量场、流量、叶状结构、李导数、李群、李代数等。充分利用现代数学提供的强大的工具的同时,书中采用尽可能具体的研究方法, 选取了各种图像,并对用几何思维考虑抽象概念进行了直观的讨论。
这本小册子也是一本问题集。前面有8章,每章都有许多例题与问题, 还有一章研究问题,一章未解决的问题。 章与章之间无前因后果的关系,而且除第1章(系统介绍一个问题)外,各章内部的例题亦无太多的联系。实际上组合数学,特别是组合几何,并无统一的方法,不同的问题往往需要进行不同的处理。这 不意味组合几何是一盘散沙,这各具个性的问题与方法,恰好形成组合几何鲜明的特点。正因为有众多的问题,而且没有固定的方法,组合几何吸引了许多数学家(包括专业与业余两方面)的浓厚兴趣。
欧几里得编著兰纪正、朱恩宽编译的《几何原本/汉译经典》是世界上、最完整且流传最广的数学著作,也是欧几里得最有价值的传世著作。欧几里得在本书中,系统地总结了泰勒斯、毕达哥拉斯及智者派等前代学者在实践和思考中获得的几何知识。欧几里得建立了定义和公理并研究各种几何图形的性质,从而确立了一套从公理、定义出发,论证命题得到定理的几何学论证方法,形成一个严密的逻辑体系——几何学。而本书也就成了欧氏几何的奠基之作,它的出现,对西方人的思维方式产生深刻的影响。
《几何原本(建立空间秩序 久远的方案之书全新修订本)》是古希腊数学家欧几里得的一部不朽著作。集古希腊数学的成果和精神于一书。 它既是数学巨著。又极富哲学精神。并 次完成了人类对空间的认识。该书自问世之日起,在长达两千多年的时间里。历经多次翻译和修订。自1482年 个印刷本出版,至今已有一千多种不同的版本。流传甚广。 《几何原本》(全新修订本)收录了原著13卷全部内容,包含了5条公理、5条公设、23个定义和467个命题。即先提出公理、公设和定义。再由简到繁予以证明。并在此基础上形成了欧氏几何学体系。欧几里得这一演绎推理,后来成了用以建立知识体系的严格方式。这种严格思维范式的确立。对人类知识发展和形成的影响尤为巨大。
作者方运加以通俗易懂的语言阐述了坐标的概念,从一些简单的几何问题人手,讲述了利用坐标法分析问题与解决问题的基本方法,对比了坐标法、代数方法与几何方法在解题思路、方法的不同特点。在介绍一些基础性的以及若干较复杂但饶有趣味的问题在应用坐标法解题的过程中,使读者清楚地看到坐标概念是代数学与几何学结合的桥梁与一个学科分支――解析几何学――的产生和发展的必然性,并了解它成为强有力的数学工具的基本内涵。 《坐标法》是读者学习解析几何以及高等数学的一本启蒙书,它无论在学习与掌握坐标法还是在建立新的数学观念方面,以及对中学生的数学素养的提高,都会起到良好的作用。本书对大学、专科学校学生也有参考价值。
《21世纪普通高等院校土木工程和建筑类专业教材:画法几何》是普通高等院校土木工程和建筑类专业教材。主要内容有正投影图,包括点、直线、平面、直线与平面、曲线、曲面、投影变换、平面与立体相交、直线与立体相交和两立体相交;轴测投影;标高投影;阴影和透视投影等。 《21世纪普通高等院校土木工程和建筑类专业教材:画法几何》按照由浅入深、循序渐进的原则来编写,说理清楚,重点突出,图文并茂,通俗易懂。通过学习,可逐步建立和加强学生的图示、图解能力和空间思维能力。与《21世纪普通高等院校土木工程和建筑类专业教材:画法几何》配合使用的《画法几何习题集》由同济大学出版社同时出版。为了帮助广大学生学好“画法几何及工程制图”课程,同济大学出版社还出版了《画法几何解题指导》,可供学生学习、解题时参考
《欧几里得原理十三本书》是当代最流行的标准英译本著作,本书是欧几里得数学思想研究的历史总结,每章节都作了详细的注释,包括每个定义、假设命题等都进行分析和讨论,反驳与支持,推断和解读。全套书共三册,主要介绍了欧几里得的古典数学思想,包含圆,直线,三角形,锥体,圆柱体等元素,涵盖中世纪文艺复习时期一些评论家的主要观点,对其进行数学解读、分析与评论。此外,本书也对欧几里得历史笔记中的文字和语言问题作了非常详细的说明与介绍,堪称数学思想领域的开山巨作。
《欧几里得原理十三本书》是当代最流行的标准英译本著作,本书是欧几里得数学思想研究的历史总结,每章节都作了详细的注释,包括每个定义、假设命题等都进行分析和讨论,反驳与支持,推断和解读。全套书共三册,主要介绍了欧几里得的古典数学思想,包含圆,直线,三角形,锥体,圆柱体等元素,涵盖中世纪文艺复习时期一些评论家的主要观点,对其进行数学解读、分析与评论。此外,本书也对欧几里得历史笔记中的文字和语言问题作了非常详细的说明与介绍,堪称数学思想领域的开山巨作。
《的实验与观察:力学发展的基础》共收录了关于力学发展史上的实验与观察的15篇文章。内容包括:漫谈杠杆原理;斯蒂文的尖劈;第谷的观测与开普勒的行星运动定律;伽利略的斜面上下落实验;碰撞问题;玻意耳的抽气筒;惠更斯的摆钟;郑玄的弓和胡克的弹簧;伯努利的流体动力学;焦耳的热功当量实验;卡文迪许的万有引力实验;湍流;傅科的转动指示器;金属的疲劳;沃尔夫定律。 《的实验与观察:力学发展的基础》可以供高中生、理工科大学生、教师,科研工作者以及对科学史感兴趣的读者阅读和参考。
本书共分五编,分别为编近世几何学初编,第二编几何作图题解法及其原理,第三编初第几何学作图不能问题,第四编几何作图题及数域运算,第五编奇妙的正方形。 本书适合大学生、中学生及平面几何爱好者。
《画法几何解题指导/高等院校教学辅助读物》是根据*高等学校工程制图教学指导委员会制定的《高等学校工程制图课程教学基本要求》,在参考了国内外相关院校该课程教学实践的基础上编写而成的。内容按教学顺序编排,包括:点,直线,平面,直线与平面及两平面间的相互关系,点、直线、平面的综合题,投影变换,曲线、曲面,立体的投影及其表面上的点线,平面与立体截交,直线与立体贯穿,两立体相贯,立体的表面展开,轴测投影与阴影。共十三章。每章均附有例题,以启发学生的空间思维,培养其正确的解题思路。 本书可供理工科高等院校(包括电大、职大、函大及网络学院等)与画法几何相关的学生使用,也可供中等专科学校制图教师教学时参考,还可给工程技术人员在图解空间几何时提供帮助。