本书为日本数学家、菲尔兹奖得主广中平祐的思想文集。书中以“创造性思维”为线索,讲述了作者在数学研究中总结出的思考模式——“可变思考”,并在问题的发现、提出、整理、转换等方面做了具体阐述,让读者了解数学家独特的多维度思考方法。同时,本书还对日本数学教育中的问题做了分析,提出了学校教育、*子教育中培养创造性思维的原则与方法。本书是广中平祐先生对自己研究方法的系统性总结,是了解其思想以及日本数学研究方法的珍贵资料。
面积法是一种有着悠久历史的传统方法。近几十年来, 面积法体系得到进一步的发展, 焕发出新的生命力, 如今已成为平面几何中的基本方法,甚*成为解决很多几何难题的通法。 本书介绍了用面积法解题的基本工具 (共边定理和共角定理) 以及指导思想 (消点法), 并辅以大量例题来说明用面积法解题的有效性。 另外, 书中还介绍了面积法与勾股定理、 托勒密定理等的关系, 以及面积法在不等式、 三角等多个数学分支中的应用。 本书以面积法为主线, 串接了许多有趣的数学内容, 适合中小学师生以及数学爱好者阅读。 我们很高兴看到读者对我们的认可。现在,我们对这本书进行了完善并重新出版,希望能对你学*几何有一点帮助 .
《考研专业硕士系列丛书:经济类联考综合能力核心笔记·数学(2013)》针对经济类联考综合的数学部分,依据经济类联考综合考试大纲,结合历年真题具体要求以及考试的资讯编写,力求地再现考试的考查内容以及对考生的能力要求,限度地帮助考生提高复习效率。
作为我国高等教育组成部分的自学考试,其职责就是在高等教育这个水平上倡导自学、鼓励自学、帮助自学、推动自学,为每一个自学者铺就成才之路。组织编写供读者学习的教材就是履行这个职责的重要环节。毫无疑问,这种教材应当适合自学,应当有利于学习者掌握和了解新知识、新信息,有利于学习者增强创新意识,培养实践能力,形成自学能力,也有利于学习者学以致用,解决实际工作中所遇到的问题。
作为我国高等教育组成部分的自学考试,其职责就是在高等教育这个水平上倡导自学、鼓励自学、帮助自学、推动自学,为每一个自学者铺就成才之路。组织编写供读者学习的教材就是履行这个职责的重要环节。毫无疑问,这种教材应当适合自学,应当有利于学习者掌握和了解新知识、新信息,有利于学习者增强创新意识,培养实践能力,形成自学能力,也有利于学习者学以致用,解决实际工作中所遇到的问题。
周凯、邬学军、宋军全编著的《数学建模》以数学建模所涉及的常用数学方法(类型)为主线进行编排,内容包括:数学建模概述;数学建模方法示例;优化数学模型;图与网络数学模型;评价管理数学模型;预测分析数学模型;微分与差分方程数学模型;服务系统数学模型;统计分析数学模型;启发式算法简介。每一章讨论一种类型的模型,以应用为目的,不做过多的数学理论阐述,通过例子介绍如何使用该方法来解决实际问题。所用实例大部分来自于各种形式的数学建模竞赛,当然一篇完整的竞赛论文往往不仅仅只是一种数学方法的使用,所以在本书中一般只是给出该例子的解题思路及主要过程,它往往只是问题的部分解,一般只涉及与这一章的数学方法有关的内容。一篇的竞赛论文往往是多种数学方法以及各种工具的综合运用,它是一个团队综合能力的具体展
本书着重介绍了人工神经网络、遗传算法和模糊逻辑的基本模型、理论及算法及其在工程技术中的应用,如分类器、数据挖掘、现代优化方法和模糊控制,并且给出了基于MATLAB的数值实验,本书每章后均配有习题,以供学生复习、巩固书中所学知识。
本书是“十一五”*规划教材,详细介绍了世界范围内1l位具有代表性的技术哲学家的技术哲学思想。本书注重史论结合、比较研究和系统分析,分别从工程学的技术哲学、技术哲学的人文关怀、社会批判的技术哲学、技术哲学的功能论解释和技术哲学的综合理论这五个方面展开论述。本书可作为哲学社会科学和工程技术科学相关专业的本科生和研究生的参考文献,也可作为关注技术与人类生活关系的思考者的基本读物。
数学是关于数的学问吗?数学是人类的发明还是人类的发现?为什么数学看起来那么抽象深奥?为什么说数学是万学之学? 本书以数学的产生和发展历程为主线,通过数学人物和历史事件对这些问题进行寻根溯源,讲述了一个关于数学渊源的故事,为读者描绘了一幅生动有趣、绚丽迷人的历史画卷。 在本书中,作者把数学的主要分支、理论和应用介绍给读者,其中既没有各种复杂艰深的数学公式和推理证明,也没有大量生僻的数学专业术语,条理清晰,语言通俗易懂。通过阅读本书,读者可以了解数学是怎么诞生的以及什么是数学这两个基本问题,从而以不一样的眼光看待数学这一人类智慧。 本书可供对数学感兴趣的读者阅读。
本书是面向各年龄层次数学爱好者、以及自认为"数学不好的人”的一本科普书。 本书的创作宗旨在于选择有趣且不太为人熟知的数学问题,从有意思的角度切入讲解问题,力求以浅显和生动的语言,将较为高深的数学知识介绍给读者,使读者不但能理解这些问题,更能获得思路继续研究和赏玩,从而获得更多乐趣。让读者摆脱数学恐惧症,建立数学思维,爱上学数学。作者也将数学家攻克此问题的过程中所遇到的困难,解决困难的思路一一整理,呈现给读者。让读者既能有读"历史”书一般的趣味,也能感受数学家的高超思维模式与某些问题的意外困难。 本书涉及的数学问题方面很广,包含数论,图论,微积分,概率论,博弈论,物理中的数学等等,按话题内容方向组织为8章,基本按从易到难排列。其中末章"历史趣味”是泛数学文化方面的话题,有
本书讲述了一种理解和学习微积分的新思路。书中通过探索微积分发展历程背后的数学动机,展现了这一数学基本工具的魅力。作者根据自己研究和教授微积分的丰富经验,结合多年从事中学和大学数学教育的心得体会,对传统的微积分教学方式,即大多按照从极限、微分、积分到级数的顺序进行学习的方法提出了异议,探讨了一种更有趣、更易被接受和理解的学习方法。作者写过不少富有启发意义的微积分教材,此次利用自己在教学与研究方面的特长,写成了这本内容丰富、风格有趣的 小书 。本书适合中学以上水平的数学爱好者、学生和教师阅读。
在了解这个世界的过程中,现实经常会挑战我们的感官和直觉,让我们震惊不已。这时,数学*像一把雨伞,当撑开这把雨伞时,我们仿佛进入了一个奇特的境界,有了迈向真相、行走在谜团中的勇气;当收起这把雨伞时,我们会发现自己的认知已大不一样,所谓的“理所应当”和“显而易见”将被摒弃,现实背后隐藏的真相将带来巨大的启发。这*是数学的力量。 从代数、几何到相对论,从温度计到黑洞,作者用简洁而生动的笔触阐释了如何更好地思索、观察与理解世界。让我们带上好奇心,撑开数学这把大伞,在宇宙的奥秘中漫步,体会解开疑惑后,如雨过天晴般的愉悦。
在这本与生活常识紧密相关的数学手账中,我们将学会正确看待数学学习中的恐惧与挫折感,体会数学思维带来的快乐。作者凭借丰富的教学经验和感悟,借助引人入胜的数学知识和300多幅手绘插画,用简单的语言讲述了对称、模糊逻辑、彭罗斯图案、无穷、孪生质数猜想、博弈论、费马大定理等有趣的数学话题,借此鼓励读者学会处理数学学习中的困难与变化,找到适合自己的思考方法。无论是学生还是数学爱好者,*能在阅读本书的过程中获得学习数学的勇气与自信,唤醒自己 心中的数学家 。
本书基于麻省理工学院开设的概率论入门课程编写,内容*,例题和习题丰富,结构层 次性强,能够满足不同读者的需求。书中介绍了概率模型、离散随机变量和连续随机变量、多元随机变量以及极限理论等概率论基础知识,还介绍了矩母函数、条件概率的现代定义、独立随机变量的和、*小二乘估计等*内容。