本书为日本数学家、菲尔兹奖得主广中平祐的思想文集。书中以“创造性思维”为线索,讲述了作者在数学研究中总结出的思考模式——“可变思考”,并在问题的发现、提出、整理、转换等方面做了具体阐述,让读者了解数学家独特的多维度思考方法。同时,本书还对日本数学教育中的问题做了分析,提出了学校教育、*子教育中培养创造性思维的原则与方法。本书是广中平祐先生对自己研究方法的系统性总结,是了解其思想以及日本数学研究方法的珍贵资料。
内容介绍 八年前, 数学之美 系列文章原刊载于谷歌黑板报,获得上百万次点击,得到读者高度评价。读者说,读了 数学之美 ,才发现大学时学的数学知识,比如马尔可夫链、矩阵计算,甚到余弦函数原来都如此亲切,并且栩栩如生,才发现自然语言和信息处理这么有趣。 在纸本书的创作中,作者几乎把所有文章都重写了一遍,为的是把高深的数学原理讲得更加通俗易懂,让非专业读者也能领略数学的魅力。读者通过具体的例子学到的是思考问题的方式 如何化繁为简,如何用数学去解决工程问题,如何跳出固有思维不断去思考创新。 本书*一版荣获国家图书馆第八届文津图书奖。*二版增加了针对大数据和机器学习的内容。第三版增加了三章新内容,分别介绍当今非常热门的三个主题:区
面积法是一种有着悠久历史的传统方法。近几十年来, 面积法体系得到进一步的发展, 焕发出新的生命力, 如今已成为平面几何中的基本方法,甚*成为解决很多几何难题的通法。 本书介绍了用面积法解题的基本工具 (共边定理和共角定理) 以及指导思想 (消点法), 并辅以大量例题来说明用面积法解题的有效性。 另外, 书中还介绍了面积法与勾股定理、 托勒密定理等的关系, 以及面积法在不等式、 三角等多个数学分支中的应用。 本书以面积法为主线, 串接了许多有趣的数学内容, 适合中小学师生以及数学爱好者阅读。 我们很高兴看到读者对我们的认可。现在,我们对这本书进行了完善并重新出版,希望能对你学*几何有一点帮助 .
本书以独特的视角呈现线性代数的全貌,*覆盖了线性空间与线性映射、矩阵与行列式、谱理论、欧几里得结构等核心理论,还单独讨论了向量值与矩阵值函数的微积分、动力学、凸集、赋范线性空间、自伴随矩阵的本征值计算等特色专题,理论和应用相结合。每章*有练习,并为部分练习提供解答。书后还有辛矩阵、快速傅里叶变换、洛伦兹群、若尔当标准形等16个附录。
内容简介 自文明诞生以来,人类从未停止过对“无穷”的探索和研讨。你可能需要一本指导手册,带你开启无穷领域的无边漫游! 在物质世界中,无穷是否真的存在?多重宇宙的猜想是不是空穴来风?怎样制作无尽的相似图形?逻辑系统永远不能自洽?无穷小有多小?无穷大又有多大? 本书共收录63个主题,以思维漫游的形式为读者介绍“无穷”的奥秘。同数学家、哲学家一起讨论逻辑相悖的话题,了解革新艺术、计算机,甚至人类认知领域的经典数学理论。在这场虚拟的漫游旅途中,读者将在无限拓展思维、认知与情感的同时,收获更加灵活、多元的视角,看待已知及未知的世界。 目录 引 言 ·欧几里得完美的证明 对无穷岛的搜寻 健康警告 【旅程的开端】
理解数学需要具备一种纯粹的感觉,即 数感 。本书为日本数学家、菲尔兹奖与沃尔夫奖得主小平邦彦先生的思想随笔文集,书中收录了小平邦彦先生对数学、数学教育的深思、感悟文章,记述了数学家对 数学 数感 的独到理解,文笔幽默,深入浅出。同时,书中还辑录了小平邦彦先生在普林斯顿高等研究院时期,与赫尔曼?外尔等数学大家交流的趣闻轶事,对深入理解数学、数学教育具有深刻启示。
本书是分析领域内的一部经典著作。主要内容包括:抽象积分、正博雷尔测度、LP-空间、希尔伯特空间的初等理论、巴拿赫空间技巧的例子、复测度、微分、积空间上的积分、傅里叶变换、全纯函数的初等性质、调和函数、*大模原理、有理函数逼近、共形映射、全纯函数的零点、解析延拓、HP-空间、巴拿赫代数的初等理论、全纯傅里叶变换、用多项式一致逼近等。另外,书中还附有大量设计巧妙的习题。本书体例优美,实用性很强,列举的实例简明精彩,基本上对所有给出的命题都进行了论证,适合作为高等院校数学专业高年级本科生和研究生的教材。
内容简介: MBA联考综合试卷数学部分历年真题解析。主要内容是将所属于同一考点之下的真题进行归类编排,并进行详细解析,总结考点情况,阐述命题规律,然后举一反三,编写适量模拟试题,对试题进行解析,以达到掌握考点的效果。
《高等数学30年真题超精解(数学一)》汇集了1988—2017年全国硕士研究生入学统一考试数学一试题中的所有高等数学题目,并按照考研数学考试大纲规定的章节和题型进行分类编写,将不同年份、相同考点和题型的试题归纳在一起,内容翔实,栏目设计合理,且做到一题多解,具有独到之处。 《高等数学30年真题超精解(数学一)》涵盖了历年考题中所有的题型和解题方法,并针对每类题型,给出相应的知识要点和解题思路,做到知识点融会贯通,使考生在复习过程中做到有的放矢,心中有数。 《高等数学30年真题超精解(数学一)》可作为备战2018年研究生入学考试的学生、提前备战2019年研究生入学考试的学生的辅导用书,也可供从事本专业教学的教师参考。
本书以飞机结构疲劳和损伤容限设计为中心内容,介绍飞机结构疲劳设计和结构损伤容限设计的基本原理及相关的基础理论知识,例如疲劳机理、材料的疲劳强度、断裂力学基础知识等,在此基 础上重点介绍飞机结构疲劳和损伤容限设计方法。考虑民用飞机和军用飞机特点,对特殊问题进行必要的介绍(个别方法的详细介绍见附录)。全书共分13章。章介绍飞机结构设计思想演变和 结构强度设计准则。第2章介绍疲劳强度机理和金属材料的疲劳强度。第3~6章介绍飞机结构疲劳设计理论基础和设计方法。第7章介绍结构损伤容限设计基本概念。第8章介绍与损伤容限设 计相关的断裂力学基础知识。第9~12章介绍飞机结构损伤容限设计基本方法,并对飞机典型结构实例进行损伤容限分析设计。3章介绍飞机复合材料结构疲劳和损伤容限设计。
本书分试题册和解析册两册,由微积分、概率论、线性代数三部分组成,严格按照新公布的经济类联考数学考试大纲编写,内容分为九章。1000题选题的题型、格式和难易程度与真题保持高度一致。本书题量丰富,题目精心选编,更好更全面的诠释经济类联考数学考试的内容、基本题型、重要知识点的内涵和延伸,为考生备考助力。
本书是针对考研数学复习的强化阶段和冲刺阶段所编写的八套模拟题,编者严格依据《2019年全国硕士研究生入学统一考试数学考试大纲》、认真分析和研究今年考研命题方向精心选题编撰。本书题目覆盖考研数学的重要知识点和常考题型,为广大考生提供全方位、系统化的考前训练,帮助考生对复习效果进行有效自我检测,强化对重要原理的理解和方法的灵活运用。
内容提要《考研数学复习教程(数学一和数学二适用)》包括以下部分:一、考核内容要点———本部分对《数学考试大纲》所要求的内容进行了全面、透彻的讲解,注重对基本概念、基本理论和基本方法的解读。二、补充公式与结论———本部分对一般教材中没有的、但对知识理解和解题有益的公式和结论进行了较为全面的补充,并对难于理解的公式和结论给出了证明或举例说明。三、典型问题与方法技巧———本部分是本书的精华也是本书的特色:在对历年试题研读的基础上,详细归纳总结了每部分考过的以及可能考到的各类问题,抛开其表面形式,剖析出其本质特征,给出了每类问题的快捷有效的处理方法,并注重每类问题的各种变式,使读者能够见到题目就知从哪入手,并快速准确求解。四、强化训练———本部分试题的难易程度十分贴近考研真题,有的
《常微分方程考研教案(第2版)》由两部分组成,部分内容涉及绪论、一阶微分方程的初等解法、一阶微分方程的解的存在定理等,每章由“知识脉络图解”、“重点、难点解读”、“课程考试、考研要点点击”、“典型例题及习题精选详解”等四方面内容组成;第二部分是由课程考试真题和考研真题以及它们的
《化繁为简考研数学专题全讲系列:考研高等数学专题全讲(理工类)》为弥补目前考研数学辅导之重题型、轻思想、总结雷同之不足,“化繁为简学习法”,将繁杂不堪的大学数学知识变得框架清晰、简单易懂,其精髓是立足知识点的概括与联系,以“极限”、“微观的量”与“宏观的量”的对比研究以及“多变量分析”等思想提炼方法,以方法指导繁杂的题型,以专题带动知识点,《化繁为简考研数学专题全讲系列:考研高等数学专题全讲(理工类)》以此法为主线,突破章节限制,以3个框图引出总结与综合,仅用极限、微分、积分、级数、常微分方程等15个专题(一专题一方法)概括全课程,通过循循善诱使读者最终一通百通,《化繁为简考研数学专题全讲系列:考研高等数学专题全讲(理工类)》凭借思想的新颖、语言的生动、解题思路的清晰和公式记忆方法
《北大燕园·2014年李正元、李永乐考研数学(7):数学全真模拟经典400题(数学1)》是依据考研数学大纲为2014年考研读者全新优化设计的一本全真模拟训练套题,本书中的试题难度略高于2013年考研试题,解答题(包括证明题)体现了考试重点、难点内容,综合性比较强;选择题与填空题着重考查考生对基本概念、基本公式、基本定理的理解和运用,适用于第三阶段复习训练之用。 《北大燕园·2014年李正元、李永乐考研数学(7):数学全真模拟经典400题(数学1)》中的每道题均有较透彻的分析、详细解答、归纳总结的评注,因此希望考生在做题时,如果遇到了困难,不要急于看分析与解答,要多思考,只有这样才能达到本书编写的目的,才能提高应试水平,才能取得好成绩。