《Python统计分析基础及实践》以Pytho3为基础,详细介绍了Python在统计分析中的基础知识和实践应用,全书大致 由数据整理、概率和统计推断三部分组成。其中在章对统计分析对象——数据的基本用语和数据的分类进行了介绍。 第2~3章介绍了汇总平均值和数据方差的计算方法,进而介绍了数据可视化的方法。第4~9章介绍概率相关知识,概率是 统计分析中不可缺少的数学知识。0~12章介绍主要的统计分析方法,如参数估计、假设检验、回归分析等。其中每章 都用一个例子贯穿始终,提出问题并用Python编程实现,以点带面,可帮助读者快速理解知识点,并通过编程让读者对统 计分析建立直观的理解。 《Python统计分析基础及实践》知识点全面,内容安排由浅入深、循序渐进,特别适合大中专院校金融、财务、统计、 计算机、人工智能、机器学习相关专业学生学习,也适
编程是一项充满乐趣的挑战,想上手非常容易!在本书中,沃伦和卡特父子以亲切的笔调、通俗的语言,透彻、全面地介绍了计算机编程世界。他们以简单易学的Python语言为例,通过可爱的漫画、有趣的示例,生动地介绍了变量、循环、输入和输出、数据结构以及图形用户界面等基本的编程概念。与第2版不同,第3版的示例使用Python3而不是Python2,另外添加了关于网络的新内容。只要懂得计算机的基本操作,任何人都可以跟随本书,由简入难,学会编写Python程序,甚至制作游戏。
在本书中,作者聚焦于微软的Power BI,并通过精准的演示,向读者清楚地展示如何在各种数据库和CRM应用程序上产生数据视觉效果。另外的福利就是,读者还可以了解如何在Azure应用程序中嵌入视觉效果。Cortana套件的整合确实是一个倍增器。 你将学到:— 数据可视化解决方案的市场调查。 — 如何使用普通和 的Power BI功能。 — 如何将嵌入式Power BI仪表板部署为Azure应用程序。 — 如何使用Microsoft SQL Server构建现代Power BI解决方案,并应用包括Cortana在内的Microsoft Stack。 — 如何在开源数据存储上构建一个视觉上令人满意的Power BI解决方案,即PostgreSQL。 — 如何解锁企业机密,例如通过将Power BI与Dynamics CRM集成并使用自然语言查询来梳理趋势,进而突出 相关的业务趋势。
本书采用大量图片,通过详细的分步讲解,以直观、易懂的方式展现了7个数据结构和26个基础算法的基本原理。章介绍了链表、数组、栈等7个数据结构;从第2章到第7章,分别介绍了和排序、查找、图论、安全、聚类等相关的26个基础算法,内容涉及冒泡排序、二分查找、广度优先搜索、哈希函数、迪菲-赫尔曼密钥交换、k-means算法等。 本书没有枯燥的理论和复杂的公式,而是通过大量的步骤图帮助读者加深对数据结构原理和算法执行过程的理解,便于学习和记忆。将本书作为算法入门的步,是很好不错的选择。
内容简介 这是一本贯穿金融业务经营全流程,以业务为驱动的金融数据挖掘与建模著作,涵盖分析框架、模型算法、模型评估、模型监控、算法工程化等整个数据建模的闭环。 本书的4位作者都是在金融领域有有多年工作经验的大数据专家,不仅技术功底深厚、业务经验丰富,而且对金融行业从业者的需求痛点和图书市场的供给情况有深入了解,他们通过精心策划和写作,让本书内容独树一帜:涵盖金融业务经营全流程,以业务驱动,包含大量针对具体场景的实战案例。 本书针对决策类、识别类、优化分析类3大主题,9大模板:客户价值预测、营销响应预测、细分画像、交叉销售、申请反欺诈、违规行为识别、预测、运筹优化、流程挖掘,详细讲解了每个模板算法原理、评估方法、优化方法和应用案例等,内容上极力做到准确、明晰、直观与实用。 此外,本书还对
在本书中,作者聚焦于微软的Power BI,并通过精准的演示,向读者清楚地展示如何在各种数据库和CRM应用程序上产生数据视觉效果。另外的福利就是,读者还可以了解如何在Azure应用程序中嵌入视觉效果。Cortana套件的整合确实是一个倍增器。你将学到:— 数据可视化解决方案的市场调查。— 如何使用普通和 的Power BI功能。— 如何将嵌入式Power BI仪表板部署为Azure应用程序。— 如何使用Microsoft SQL Server构建现代Power BI解决方案,并应用包括Cortana在内的Microsoft Stack。— 如何在开源数据存储上构建一个视觉上令人满意的Power BI解决方案,即PostgreSQL。— 如何解锁企业机密,例如通过将Power BI与Dynamics CRM集成并使用自然语言查询来梳理趋势,进而突出 相关的业务趋势。
在本书中,作者聚焦于微软的Power BI,并通过精准的演示,向读者清楚地展示如何在各种数据库和CRM应用程序上产生数据视觉效果。另外的福利就是,读者还可以了解如何在Azure应用程序中嵌入视觉效果。Cortana套件的整合确实是一个倍增器。你将学到:— 数据可视化解决方案的市场调查。— 如何使用普通和 的Power BI功能。— 如何将嵌入式Power BI仪表板部署为Azure应用程序。— 如何使用Microsoft SQL Server构建现代Power BI解决方案,并应用包括Cortana在内的Microsoft Stack。— 如何在开源数据存储上构建一个视觉上令人满意的Power BI解决方案,即PostgreSQL。— 如何解锁企业机密,例如通过将Power BI与Dynamics CRM集成并使用自然语言查询来梳理趋势,进而突出 相关的业务趋势。
在本书中,作者聚焦于微软的Power BI,并通过精准的演示,向读者清楚地展示如何在各种数据库和CRM应用程序上产生数据视觉效果。另外的福利就是,读者还可以了解如何在Azure应用程序中嵌入视觉效果。Cortana套件的整合确实是一个倍增器。你将学到:— 数据可视化解决方案的市场调查。— 如何使用普通和 的Power BI功能。— 如何将嵌入式Power BI仪表板部署为Azure应用程序。— 如何使用Microsoft SQL Server构建现代Power BI解决方案,并应用包括Cortana在内的Microsoft Stack。— 如何在开源数据存储上构建一个视觉上令人满意的Power BI解决方案,即PostgreSQL。— 如何解锁企业机密,例如通过将Power BI与Dynamics CRM集成并使用自然语言查询来梳理趋势,进而突出 相关的业务趋势。
在本书中,作者聚焦于微软的Power BI,并通过精准的演示,向读者清楚地展示如何在各种数据库和CRM应用程序上产生数据视觉效果。另外的福利就是,读者还可以了解如何在Azure应用程序中嵌入视觉效果。Cortana套件的整合确实是一个倍增器。 你将学到:— 数据可视化解决方案的市场调查。 — 如何使用普通和 的Power BI功能。 — 如何将嵌入式Power BI仪表板部署为Azure应用程序。 — 如何使用Microsoft SQL Server构建现代Power BI解决方案,并应用包括Cortana在内的Microsoft Stack。 — 如何在开源数据存储上构建一个视觉上令人满意的Power BI解决方案,即PostgreSQL。 — 如何解锁企业机密,例如通过将Power BI与Dynamics CRM集成并使用自然语言查询来梳理趋势,进而突出 相关的业务趋势。
本书采用生动活泼的语言,从入门者的角度,讲解了Python 语言和sklearn 模块库内置的各种经典机器学习算法;介绍了股市外汇、比特币等实盘交易数据在金融量化方面的具体分析与应用,包括对未来股票价格的预测、大盘指数趋势分析等。简单风趣的实际案例让广大读者能够快速掌握机器学习在量化分析方面的编程,为进一步学习金融科技奠定扎实的基础。
本书采用大量图片,通过详细的分步讲解,以直观、易懂的方式展现了7个数据结构和26个基础算法的基本原理。章介绍了链表、数组、栈等7个数据结构;从第2章到第7章,分别介绍了和排序、查找、图论、安全、聚类等相关的26个基础算法,内容涉及冒泡排序、二分查找、广度优先搜索、哈希函数、迪菲-赫尔曼密钥交换、k-means算法等。 本书没有枯燥的理论和复杂的公式,而是通过大量的步骤图帮助读者加深对数据结构原理和算法执行过程的理解,便于学习和记忆。将本书作为算法入门的步,是很好不错的选择。
在本书中,作者聚焦于微软的Power BI,并通过精准的演示,向读者清楚地展示如何在各种数据库和CRM应用程序上产生数据视觉效果。另外的福利就是,读者还可以了解如何在Azure应用程序中嵌入视觉效果。Cortana套件的整合确实是一个倍增器。 你将学到:— 数据可视化解决方案的市场调查。 — 如何使用普通和 的Power BI功能。 — 如何将嵌入式Power BI仪表板部署为Azure应用程序。 — 如何使用Microsoft SQL Server构建现代Power BI解决方案,并应用包括Cortana在内的Microsoft Stack。 — 如何在开源数据存储上构建一个视觉上令人满意的Power BI解决方案,即PostgreSQL。 — 如何解锁企业机密,例如通过将Power BI与Dynamics CRM集成并使用自然语言查询来梳理趋势,进而突出 相关的业务趋势。
在本书中,作者聚焦于微软的Power BI,并通过精准的演示,向读者清楚地展示如何在各种数据库和CRM应用程序上产生数据视觉效果。另外的福利就是,读者还可以了解如何在Azure应用程序中嵌入视觉效果。Cortana套件的整合确实是一个倍增器。 你将学到:— 数据可视化解决方案的市场调查。 — 如何使用普通和 的Power BI功能。 — 如何将嵌入式Power BI仪表板部署为Azure应用程序。 — 如何使用Microsoft SQL Server构建现代Power BI解决方案,并应用包括Cortana在内的Microsoft Stack。 — 如何在开源数据存储上构建一个视觉上令人满意的Power BI解决方案,即PostgreSQL。 — 如何解锁企业机密,例如通过将Power BI与Dynamics CRM集成并使用自然语言查询来梳理趋势,进而突出 相关的业务趋势。
内容简介 这是一本贯穿金融业务经营全流程,以业务为驱动的金融数据挖掘与建模著作,涵盖分析框架、模型算法、模型评估、模型监控、算法工程化等整个数据建模的闭环。 本书的4位作者都是在金融领域有有多年工作经验的大数据专家,不仅技术功底深厚、业务经验丰富,而且对金融行业从业者的需求痛点和图书市场的供给情况有深入了解,他们通过精心策划和写作,让本书内容独树一帜:涵盖金融业务经营全流程,以业务驱动,包含大量针对具体场景的实战案例。 本书针对决策类、识别类、优化分析类3大主题,9大模板:客户价值预测、营销响应预测、细分画像、交叉销售、申请反欺诈、违规行为识别、预测、运筹优化、流程挖掘,详细讲解了每个模板算法原理、评估方法、优化方法和应用案例等,内容上极力做到准确、明晰、直观与实用。 此外,本书还对
在本书中,作者聚焦于微软的Power BI,并通过精准的演示,向读者清楚地展示如何在各种数据库和CRM应用程序上产生数据视觉效果。另外的福利就是,读者还可以了解如何在Azure应用程序中嵌入视觉效果。Cortana套件的整合确实是一个倍增器。你将学到:— 数据可视化解决方案的市场调查。— 如何使用普通和 的Power BI功能。— 如何将嵌入式Power BI仪表板部署为Azure应用程序。— 如何使用Microsoft SQL Server构建现代Power BI解决方案,并应用包括Cortana在内的Microsoft Stack。— 如何在开源数据存储上构建一个视觉上令人满意的Power BI解决方案,即PostgreSQL。— 如何解锁企业机密,例如通过将Power BI与Dynamics CRM集成并使用自然语言查询来梳理趋势,进而突出 相关的业务趋势。