本书全面系统地讲解了MATLAB金融算法分析与应用,以及金融数据挖掘中的趋向和发展趋势指标,并结合具体的机器学习算法分析,让读者深入学习和掌握MATLAB金融数据机器学习算法。本书注重实战,通过大量的案例,帮助读者更好地理解书中的内容。 本书分为2篇,共15章。主要内容有:MATLAB入门与提高、MATLAB高级应用、时间序列数据处理、量化投资趋向指标、量化投资反趋向指标、BP神经网络工具箱上证指数预测、 BP神经网络工具箱多指标预测、RBF神经网络多指标预测、Hopfield神经网络多指标预测、马尔可夫(Markov)链上证指数预测、灰色理论下的上证指数预测、指数平滑下的上证指数预测、支持向量机SVM下的涨跌预测、贝叶斯(Bayes)网络多指标预测、Pareto多目标优化分析。 本书适合所有想全面学习MATLAB 金融分析算法的人员阅读,也适合各种量化投资开发人
本书介绍了数学问题数值求解方面基本与常用的方法。包括绪论、求解线性方程组的直接方法与迭代方法、插值法、函数逼近、数值积分和微分、特征值与特征向量、非线性方程求根、常微分方程初值与边值问题的解法及偏微分
本书精选了科学和工程中常用的200余个算法,全部采用MATLAB语言编程实现,并结合实例对算法程序进行验证和分析。本发为上下两篇,上篇为MATLAB基础篇,主要介绍MATLAB的基本功能和操作以及MATLAB程序设计的入门知识,下篇为算法程序篇,主要讲述以下方面常用算法的MATLAB实现,包括插值,函数逼近,矩阵特征值计算。数值微分,方程求根,非线性方程组求解,解线性方程组的直接法,解线性方程组的迭代法,随机数生成,特殊函数计算,常微分方程的初值问题,偏微分方程的数值解法,数据统计和分析。 本书适用于初中高级MATLAB用户,既可以作为使用MATLAB的高等院校师生的教学用书或参考用书,又可以供广大科研人员和工程技术人员参考。
本书内容包括经典的算法设计技术,主要介绍数据结构和标准模板库、递归与分治策略、动态规划、贪心算法、回溯算法、分支限界算法、图的搜索算法、图论、数论和组合数学问题。本书包括大量的问题实例,并在北京大学、浙江大学和杭州电子科技大学在线题库中精选原题,详细地分析解题的方法,深入浅出地讲解用到的算法,章后的上机练习题也选自在线题库中的典型题目,供读者练习,以巩固所学算法。本书内容基本上涵盖了目前大学生程序设计竞赛所要掌握的算法。 本书结构清晰、内容丰富,适合作为计算机科学与技术、软件工程以及相关学科算法课程的教材或参考书,特别适合有志于参加信息学竞赛和ACM大学生程序设计竞赛的读者学习和训练。
Python是一种面向对象、解释型计算机程序设计语言,其应用领域非常广泛,包括数据分析、自然语言处理、机器学习、科学计算以及推荐系统构建等。 本书用Python语言来讲解算法的分析和设计。本书主要关注经典的算法,但同时会为读者理解基本算法问题和解决问题打下很好的基础。全书共11章。分别介绍了树、图、计数问题、归纳递归、遍历、分解合并、贪心算法、复杂依赖、Dijkstra算法、匹配切割问题以及困难问题及其稀释等内容。本书在每一章结束的时候均有练习题和参考资料,这为读者的自我检查以及进一步学习提供了较多的便利。在全书的结尾,给出了练习题的提示,方便读者进行查漏补缺。 本书概念和知识点讲解清晰,语言简洁。本书适合对Python算法感兴趣的初中级用户阅读和自学,也适合高等院校的计算机系学生作为参考教材来阅读。