《怎样解题:数学思维的新方法》是靠前有名数学家波利亚论述中学数学教学法的普及名著,对数学教育产生了深刻的影响。波利亚认为中学数学教育的根本宗旨是教会年轻人思考,他把“解题”作为培养学生数学才能和教会他们思考的一种手段和途径。《怎样解题:数学思维的新方法》是他专门研究解题的思维过程后的结晶。《怎样解题:数学思维的新方法》的核心是他分解解题的思维过程得到的一张“怎样解题”表。作者在书中引导学生按照“表”中的问题和建议思考问题,探索解题途径,进而逐步掌握解题过程的一般规律。书中还有一部“探索法小词典”,对解题过程中典型有用的智力活动做进一步解释。
《Ь.П.吉米多维奇数学分析习题集题解》自1979年出版发行以来,历经30多个春秋,一直畅销不衰,深得读者厚爱。读者通过学习该书,对掌握数学分析的基本知识、基础理论和基本技能的训练,感到获益匪浅,赞誉
全书共分三篇。篇介绍了21种平面几何证明方法;第二篇介绍了14种常见问题的求解思路;第三篇介绍了几何图形的基本性质,如三角形中的巧合点问题、三角形中的数量及位置关系问题等。本书在归纳、总结平面几何的概念、定理、公式的基础上,更贴近数学竞赛的命题方向、命题内容。适合于初高中学生尤其是数学竞赛选手、初高中数学教师和中学数学奥林匹克教练员使用,也可作为高等师范院校、教育学院、教师进修学院数学专业开设的“竞赛数学”课程教材及。省级骨干教师培训班参考用书。
数学分析是大学数学系的必修课,也是理工科高等数学的主要组成部分,更是研究生考试的必考内容。关于数学分析,很富盛名习题,莫过于苏联数学家,鲍里斯帕夫罗维奇 吉米多维奇编写的《数学分析习题集》。但是在相当
比较系统地对无穷级数在数学中所起的技术工具作用与连分数解析理论构造闵可夫斯基(Minkowski)函数及将其开拓到复数域上作了介绍。特别较为无穷发散级数的几种和性结合实际地作了论述和论证。当然这是《无穷级数与连分数》在数学思想方面的体现。 《无穷级数与连分数》章主要介绍无穷收敛级数在经典与近代数学中的技术工具作用,第二章主要介绍无穷发散级数作为某些函数的渐进级数作相应的数值计算与求微分方程的数值解。同时不同程度地阐明了对无穷发散级数的几种可和性方法。第三章论述连分数与无穷级数的关系及连分数的解析理论。第四章应用其连分数的解析理论,特别是Denjoy引理构造了闵可夫斯基函数,而这个函数具有明显的特征,顺便将其解析开拓到复平面的某个区域内,给出最普遍的表示形式。
《大学数学:概率论与数理统计(第二版)》注重体现工程实际应用背景且注意为现代概率论与数理统计新知识留有接口,同时精简、压缩一些传统内容,淡化计算技巧的训练,加强理论基础的培养;重新组织、精选了例题及习题,使之更有利于培养工科学生利用概率统计方法解决和分析工程实际问题。 《大学数学:概率论与数理统计(第二版)》内容包括随机事件与概率、条件概率与独立性、随机变量及其分布、多维随机变量及其分布、随机变量的数字特征与极限定理、数理统计的基本概念、参数估计、假设检验、单因素试验的方差分析及一元正态线性回归等九章,前6章配备了拓展例题,对其理论与方法作适当的加深和拓广。附录介绍了如何使用MATLAB软件处理概率统计问题。《大学数学:概率论与数理统计(第二版)》适合本科院校工科各专业学生使用,
本书系统地介绍了抽象代数这一重要数学分支的最基本的内容,其中包括群论、环论与域论。在域论这一章中还比较全面地介绍了有限Galois理论,书中还配备了数量、难易程度不一的习题,习题均有解答或提示,书后有附录。 本书可供综合性大学、师范大学数学系学生阅读,可作为教材,亦可供理科各系以及信息、通讯工程专业的大学生、研究生及老师参考。
《自然哲学的数学原理》是牛顿的科学才华处于时期所写的旷世巨著,是他“个人智慧的结晶”。牛顿不但总结出了力学的基本定律,而且还发现了证明这些定律的数学方法,奠定了数学成为描述宇宙运动的语言的基础。在《自然哲学的数学原理》之后,人类在自然科学中的成就层出不穷,但这些成就无一不与这部非凡的著作息息相关。牛顿提供了科学思维体系的样板。《自然哲学的数学原理》标志着经典力学体系的建立,是人类科学史乃至整个人类文明史中的不朽巨著。《自然哲学的数学原理》不仅影响着自它面世后的300年里的自然科学领域,而且对人类的宇宙观也产生了深刻的影响。
本书针对“离散数学”有关教材中集合论、代数系统、图论和数理逻辑四大部分的内容,分为十章进行编排。按照基本知识点、问答与论证、解题思路与方法三个层次.由浅人深地编入了359个具有代表性的例题。解答详实,注重基本概念的理解、分析能力的培养和逻辑思维的训练。 本书可供高等院校计算机及有关专业本、专科师生作为离散数学课程的教学和学习参考书,也是离散数学自学者的良好辅导资料。
本手册以高等数学的公式为主线,以简洁的形式分门别类地详细介绍了高等数学的主要公式、定义、定理、图形以及各种题型的解题方法和技巧.除了高等数学教材中的基本内容和公式、常见解题方法和技巧外,本手册还大量收集了一般教材中没有的,但在解题中有用的公式、特殊的解题方法和技巧. 使用本手册可以帮助读者迅速复习、回忆和掌握高等数学的公式、解题方法和技巧,以提高高等数学的学习效率、解题能力和考试成绩. 本手册适合学习高等数学(微积分)的大学一年级学生,也适合复习高等数学并准备考研究生的高年级学生,对学习和复习高等数学的其他读者也有参考价值. 本手册还可作为高等数学教师的一本方便的教学参考书和工具书.
本书主要介绍工程技术中常用的试验设计与分析方法。内容包括方差分析、因子设计、正交试验设计、稳健设计和可靠性设计,其中稳健设计是较新的试验设计方法。本书内容丰富,例题多样,紧密联系实际。书中配有一定数量的习题,书后附有习题答案。概率统计的基础知识作为附录A列于书后,附录B是常用的分布表和正交表。本书可作为理工科各专业及管理专业的大学生、研究生的教材,也可供工程技术人员、科研人员和教师参考。
本书围绕微观的数学主方法论和宏观的数学方法论分别对波利亚的数学启发法、数学发现的的逻辑与关系映射反演方法、数学抽象的主法与抽象度分析法、数学美与数学直觉、数学活动论与数学文化论等主题进行了论述。书中不仅较为集中地反映了外的数学方法论研究上的成果,而且也包括作者若干独立的研究与数学实践活动、特别是与数学教学的密切结合,并体现了数学方法论与数学哲学、数学史研究互相结合重要特点。
多元统计是数理统计学的一个分支。它根据多因素多指标试验与观测所得到的数据资料,对研究对象的特征及内在规律进行估计与推断,应用十分广泛。本教材包括多元线性回归、多元线性相关、多元非线性回归、回归的试验设计与分析、聚类分析、判别分析、主成分分析、因子分析及SAS的应用等内容。本书既可作为非数学专业硕士研究生多元统计课程的教材,也可作为科技工作者的参考文献。
本书特点: 1.遵循认识规律,揭示数学发现 对于概念、定理、公式,尽可能从直观背景出发,提出问题,分析问题,得出结论,然后再抽象论证。将数学的基本思想融人各教学环节中,引导学生学会从量化的角度数学地思考和处理问题。 2.加强综合应用数学知识能力的训练 各章节的例题和习题比较丰富,特别是适量选编了一些综合性的题目。对于难度较大的题目,我们注意推敲再三,对运算技巧作了淡化处理,因为此类技巧并未涉及基本的数学思想和方法。
本书系统地介绍了运筹学中的主要内容,重点讲解了应用广泛的线性规划运输问题整数规划网络规划与网络计划存储论决策论等定量分析和优化的理论与方法本书强调学以致用,以大量实际问题为背景引出运筹学各分支的基本概念模型和方法,具有很强的实用性;在基本原理和方法的介绍方面,本书尽量避免复杂的理论证明,通过大量通俗易懂的例子进行理论方法的讲解,具有较强的趣味性,又不失理论性,理论难度由浅入深,适合不同层次的读者
“中国文化知识读本”丛书是由吉林文史出版社和吉林出版集团有限责任公司组织知名专家学者编写的一套旨在传播中华五千年传统文化,提高全民文化修养的大型知识读本。 王泽妍编著的《古代数学与算学》为丛书之一,生动介绍了古代数学发展、古代算术名家、古代算书、古代记数制度和计算工具等内容。 《古代数学与算学》中优美生动的文字、简明通俗的语言、图文并茂的形式,把中国文化中的物态文化、制度文化、行为文化、精神文化等知识要点全面展示给读者。
《运筹学(第四版)》在第三版的基础上修订完善而成,主要内容有线性规划、整数线性规划、非线性规划、动态规划、图与网络分析、网络计划技术、排队论、决策分析、对策论等。 第四版继续保持了前三版的厚理论、宽口径、理论联系实际的特点和精炼、严谨的风格,第三版的绪论精炼为运筹学简介,作为引言,并结合当前的研究热点——复杂网络及大数据分析,在“图与网络分析”中增加了“复杂网络简介”,在“对策论”中增加了“网络对策”。此外对部分章节的内容和习题根据需要进行了增删或修改。习题分为(A),(B)两部分,难度有所差异,可供读者选择。教材配套的数字课程包含各章相关的应用实例和程序。 《运筹学(第四版)》可作为数学与应用数学、信息与计算科学、金融数学等专业的运筹学课程教材,也可作为管理、系统工程等
本书包括概率模型、概率公式、变量、向量、数学期望和方差、大数定律和中心极限定理、统计初步、参数估计、参数的区间估计、正态总体的显著性检验、总体分布和比例的假设检验、线性回归分析等十二章内容,并以工程技术和科学研究中广泛使用的MATLAB为例, 介绍与本书内容相关的MATLAB调用命令。 本书采用“纸质内容+数字资源”的方式。纸质内容着重讲授基本概念、基本理论和典型例题。数字资源以拓展纸质内容、拓宽学生视野、激发学习兴趣为目标,配置前沿视角、应用案例、重要概念浅析、典型例题精讲等资源,并提供交互实验及自测作业等。
本书根据高等院校理工类本科专业线性代数课程的教学大纲及考研大纲编写而成,并在第四版的基础上进行了修订和完善。引入了大量的数学实验,可以通过扫描对应即时实现实验操作。本书内容涵盖了行列式、矩阵、线性方程组、矩阵的特征值、二次型等知识。 本书可作为高等院校(少课时)、独立学院、成教学院、民办院校等本科院校以及具有较高要求的高职高专院校相关专业的数学基础课教材,并可作为上述各专业领域读者的教学参考书。
本教材坚持以高中新课程衔接为主线,以函数为研究对象,以极限为基本工具,主要讨论函数的微分和积分问题以及无穷级数、常微分方程及差分方程,并使学生掌握应用理论知识解决实际问题的能力。本教材附有配套练习册。
本练习册与同济大学数学系编写的第七版《高等数学》下册(高等教育出版社出版)相配套,共包括两部分内容:练习题和参考答案。按时完成练习作业是理工科大学生巩固高等数学课堂学习效果的基本要求,所附参考答案可方便学生完成作业后及时检查。 为了方便教师和学生收交作业,本练习册分为A、B两册,即奇数周作业为A册,偶数周作业为B册。