本书旨在介绍在高中数学奥林匹克竞赛、自主招生考试等中出现的常见重要不等式及其变形、拓展的应用。全书共8章,相互独立,每章精选了外数学竞赛中的典型不等式问题为例题,从系统观的视角,深入讲解每个问题,提炼了这些常见重要不等式的使用技巧,帮助读者建立不等式证明的“结构观”方法。 本书集普及性、理论性、实用性于一体,适合中学生、中学数学教师等阅读使用,也是学校开展教师培训与拓展性教学的好素材,同时可供数学爱好者参考。对参加全国高中数学联赛、高校自主招生等考试的考生也会有较大的帮助。
本书是学生学习数学的基础读物,不仅能够趣味的认识很多数学知识,还将生活中遇到的数学问题有趣的解释出来。在学习趣味数学知识的同时,培养读者的发散思维和创新能力。书中为读者讲述了各种不可思议的测量活动,令人惊叹的图形,了不起的数学理论和自然世界的种种数字,小读者们会发现数学原来这么有趣!
20世纪刚刚过去。百年来的世界数学,恰如高山巍峨,大海浩瀚。本书想通过数学历史上的人和事,勾勒一幅当代数学的剪影。 数学是世纪政治风云变幻的缩影。本书记载了希特勒上台怎样葬送了伟大的格丁根数学学派;数学家如何有效地投身反法西斯战争;冷战时期的超级大国同时也是世界数坛霸主。数学又是一种文化现象。布尔巴基数学学派终于由盛渐衰。诺贝尔奖获得者中却不断出现数学家。波兰、匈牙利这样的小国数学人才辈出,美国普林斯顿一步登上世界数学顶峰,东方的日本、印度、中国的数学正在迎头赶上。 数学的发展不是孤立的,计算机是数学家冯·诺伊曼的杰作:图灵用数学方法破译德军的密码:数学家占据了诺贝尔经济学奖的半壁江山。数学控制论、数学信息论、数学规划论的创始人都是数学家。 本书除了介绍以上的纵向历史。也报
20世纪刚刚过去。百年来的世界数学,恰如高山巍峨,大海浩瀚。本书想通过数学历史上的人和事,勾勒一幅当代数学的剪影。 数学是世纪政治风云变幻的缩影。本书记载了希特勒上台怎样葬送了伟大的格丁根数学学派;数学家如何有效地投身反法西斯战争;冷战时期的超级大国同时也是世界数坛霸主。数学又是一种文化现象。布尔巴基数学学派终于由盛渐衰。诺贝尔奖获得者中却不断出现数学家。波兰、匈牙利这样的小国数学人才辈出,美国普林斯顿一步登上世界数学顶峰,东方的日本、印度、中国的数学正在迎头赶上。 数学的发展不是孤立的,计算机是数学家冯·诺伊曼的杰作:图灵用数学方法破译德军的密码:数学家占据了诺贝尔经济学奖的半壁江山。数学控制论、数学信息论、数学规划论的创始人都是数学家。 本书除了介绍以上的纵向历史。也报
本书旨在介绍在高中数学奥林匹克竞赛、自主招生考试等中出现的常见重要不等式及其变形、拓展的应用。全书共8章,相互独立,每章精选了外数学竞赛中的典型不等式问题为例题,从系统观的视角,深入讲解每个问题,提炼了这些常见重要不等式的使用技巧,帮助读者建立不等式证明的“结构观”方法。 本书集普及性、理论性、实用性于一体,适合中学生、中学数学教师等阅读使用,也是学校开展教师培训与拓展性教学的好素材,同时可供数学爱好者参考。对参加全国高中数学联赛、高校自主招生等考试的考生也会有较大的帮助。
20世纪刚刚过去。百年来的世界数学,恰如高山巍峨,大海浩瀚。本书想通过数学历史上的人和事,勾勒一幅当代数学的剪影。 数学是世纪政治风云变幻的缩影。本书记载了希特勒上台怎样葬送了伟大的格丁根数学学派;数学家如何有效地投身反法西斯战争;冷战时期的超级大国同时也是世界数坛霸主。数学又是一种文化现象。布尔巴基数学学派终于由盛渐衰。诺贝尔奖获得者中却不断出现数学家。波兰、匈牙利这样的小国数学人才辈出,美国普林斯顿一步登上世界数学顶峰,东方的日本、印度、中国的数学正在迎头赶上。 数学的发展不是孤立的,计算机是数学家冯·诺伊曼的杰作:图灵用数学方法破译德军的密码:数学家占据了诺贝尔经济学奖的半壁江山。数学控制论、数学信息论、数学规划论的创始人都是数学家。 本书除了介绍以上的纵向历史。也报
内容简介 本书共四篇,包括:两数和与积的不等关系,课本条件指数不等式的探究,一个不等式的化筒,沟通两个经典问题的联系,三正数的分式不等式,构造图形无字证明,等35章.本书详细介绍了不等式的基本知识概念及其相关内容,同时讲述了不等式在不同学科领域的应用. 本书可供高中、师范院校数学系的师生和不等式爱好者阅读.