本书共24讲,主要包括数列与函数极限,函数的连续与间断,导数与微分的概念及法则,微分中值定理与洛必达法则,函数单调性与极值问题,不定积分,定积分的概念、理论与计算,定积分的几何应用与物理应用,向量及其运算,曲面与曲线,多元函数微分学,二重积分和三重积分,曲线与曲面积分,无穷级数,微分方程。 本书的主要特点是与教材同步,内容分级,以满足不同层次和不同类型读者的需要。本书各讲结构相同,包括内容提要、重点难点、典型方法与例题、习题四部分。 本书作为教学参考书,供高等学校师生参考,也可作为考研的辅导教材。
该书介绍了一些的数论问题,适合不同层次的读者阅读。一方面,作者不需要更宽泛的数学知识;事实上,只要在数学方面接受过正规的学校教育就足够了。另一方面,作者探讨了一些真正的数学兴趣问题,并以更易读懂的方式讲解,因此,数学知识丰富的作者在阅读此书时会感到非常愉悦和有益。该书中几个值得注意的点:数学归纳法的详细讲述和通过该法证明的独特的因子分解定理。
本书共分四章重积分、曲线积分、反常积分及依赖于参变量的积分,向量分析及场论,微分几何基础,傅里叶级数,理论部分叙述扼要,应用部分叙述详尽。
本书共10章,具体内容包括:绪论、预备数学基础、非线性方程求解、线性方程组的直接解法、线性方程组的迭代解法、插值法、曲线拟合和函数逼近、数值积分与微分、常微分方程的数值解法、矩阵特征值计算介绍。本书针
自上世纪20~30年其出现开始,群的上同调就成为了代数与拓扑学的交叉领域,并且促成了重要的新数学研究领域的创建,诸如同调代数和代数K-理论。该书是本综合论述有限群的上同调的书。书中介绍了最重要也是最有用的代数和拓扑方法,研究了有限群的上同调与同伦论、表示论和群作用之间的关系。书中的各理论与实例的结合,连同各种重要的经典群(对称群、交错群、李型极限群以及各种散在单群)的上同调的计算方法
无
本书是一本着重实际应用又兼顾理论要求的运筹学教材. 主要内容包括线性规划、整数规划、目标规划、非线性规划、动态规划及决策分析. 各章附有习题,书末有习题解答和提示. 本书对数学基础要求较低,适用专业范围广;基本概念与基本理论阐述清晰透彻,密切联系实际,各种算法推导详细,配有丰富实用的例题. 本书可作为工程硕士研究生以及经济管理等非数学专业大学生、研究生的教材,也可供科技人员和管理人员参考。