Almost two decades have passed since the appearance of those graph theory texts that still set the agenda for most introductory courses taught today. The canon created by those books has helped to identify some main fields of study and research, and will doubtless continue to influence the development of the discipline for some time to e. Yet much has happened in those 20 years, in graph theory no less than elsewhere: deep new theorems have been found, seemingly disparate methods and results have bee interrelated, entire new branches have arisen. To name just a few such developments, one may think of how the new notion of list colouring haridged the gulf between invuriants such as average degree and chromatic number, how probabilistic methods and the regularity lemma have pervaded extremai graph theory and Ramsey theory, or how the entirely new field of graph minors and tree-depositions harought standard methods of surface topology to bear on long-standing algorithmic graph problems.
本书概要介绍半个世纪以来由数字通信的可靠性要求所建立和不断发展的纠错码数学理论。书中不涉及纠错技术和工程具体实现问题,但也介绍了一些纠错译码算法。 本书适用于代数专业的研究生和具有较好代数基础的高年级本科生。书中所讲述的知识和方法对于研究信息科学与计算机科学中许多其他问题也会有所帮助。
组合数学是研究离散结构和离散对象关系模式的数学分支,是一门在理论和应用上涉及范围很广泛的学科。本书的内容十分丰富,讨论的问题涵盖组合数学所涉及的绝大部分领域,堪称“组合数学的百科全书”。作者的阐述深入浅出,使得高深的内容简明易懂,便于广大读者阅读。本书被美国哥伦比亚大学、斯坦福大学、加州理工学院等许多国外大学采纲为教材,在科学技术界读者中也很受推崇。
多项式代数是研究多项式和多项式系统所定义的代数与几何对象的结构、性质、特征、表示及计算的非线性代数。《多项式代数》系统介绍多项式代数的基本概念、核心理论、主要算法及若干应用。全书共分六章,前两章介绍与多项式相关的概念和运算、多项式系统的消元理论以及代数方程组的求解方法。以此为基础,第三章探讨交换代数与代数几何中的构造性理论和各种计算问题;第四章介绍由实系数多项式等式和不等式所构成的半代数系统的求解方法及相关理论;第五章简述判定高次方程根式可解性的伽罗瓦理论;第六章讨论多项式代数在五个领域中的应用。 《多项式代数》可作为高等院校数学和计算机科学系高年级本科生及研究生的教材或教学参考书,也可供有关科研人员参考。