本书是由数学天元基金和高等教育出版社共同推出的《俄罗斯数学教材选译》中的一本。 本书是作者在莫斯科大学力学-数学系讲授多遍数学分析的基础上写成的。全书共二卷,自1981年版出版以来,至今已经修订为第4版。在内容方面,作者力图使与其平行的以及后继的分析、代数和几何方面的现代数学课程之间联系更加紧密,把重点移到一般数学中最有本质意义的那些概念和方法上,并改进语言的叙述,使之与现代数学科学文献的语言适当接近;另一方面,在保持数学一般理论叙述严谨性的同时,对反映其自然科学源泉和应用的要求也有充分体现。 俄罗斯科学院院士、世界数学家В.И.阿诺尔德这样评价本书:В.А.卓里奇的教科书是现有供大学数学系、物理系学生用的分析教科书中最成功的。它与传统分析教科书的重要区别在于,它一方面更贴近自然科学 (特别是
《矩阵分析与应用(第2版)(精装)》系统、全面地介绍矩阵分析的主要理论、具有代表性的方法及一些典型应用。全书共10章,内容包括矩阵代数基础、特殊矩阵、矩阵微分、梯度分析与化、奇异值分析、矩阵方程求解、特征分析、子空间分析与跟踪、投影分析、张量分析。前3章为全书的基础,组成矩阵代数;后7章介绍矩阵分析的主体内容及典型应用。为了方便读者对数学理论的理解以及培养应用矩阵分析进行创新应用的能力,本书始终贯穿一条主线物理问题“数学化”,数学结果“物理化”。与第1版相比,本书的篇幅有明显的删改和压缩,大量补充了近几年发展迅速的矩阵分析新理论、新方法及新应用。 《矩阵分析与应用(第2版)(精装)》为北京市高等教育精品教材重点立项项目,适合于需要矩阵知识比较多的理科和工科尤其是信息科学与技术(电子、通信、自
《Ь.П.吉米多维奇数学分析习题集题解》自1979年出版发行以来,历经30多个春秋,一直畅销不衰,深得读者厚爱。读者通过学习该书,对掌握数学分析的基本知识、基础理论和基本技能的训练,感到获益匪浅,赞誉
数学分析是大学数学系的必修课,也是理工科高等数学的主要组成部分,更是研究生考试的必考内容。关于数学分析,很富盛名习题,莫过于苏联数学家,鲍里斯帕夫罗维奇 吉米多维奇编写的《数学分析习题集》。但是在相当
比较系统地对无穷级数在数学中所起的技术工具作用与连分数解析理论构造闵可夫斯基(Minkowski)函数及将其开拓到复数域上作了介绍。特别较为无穷发散级数的几种和性结合实际地作了论述和论证。当然这是《无穷级数与连分数》在数学思想方面的体现。 《无穷级数与连分数》章主要介绍无穷收敛级数在经典与近代数学中的技术工具作用,第二章主要介绍无穷发散级数作为某些函数的渐进级数作相应的数值计算与求微分方程的数值解。同时不同程度地阐明了对无穷发散级数的几种可和性方法。第三章论述连分数与无穷级数的关系及连分数的解析理论。第四章应用其连分数的解析理论,特别是Denjoy引理构造了闵可夫斯基函数,而这个函数具有明显的特征,顺便将其解析开拓到复平面的某个区域内,给出最普遍的表示形式。