《解析数论研究》中作者采用正确的方法,解决了大整数表为两个平方与一个素数之和这个猜想,给出能表为两平方和的整数的分布渐近公式这一经典问题的带有O型余项的结果,并对相邻素数差问题、奇数Goldbach猜想、三维除数问题等问题进行重新处理(以前一些处理有问题),给出适当的结果。《解析数论研究》适合从事解析数论研究的专家学者阅读。
Many different mathematical methods and concepts are used in classical mechanics: differential equations and phase flows, smooth mappings and manifolds, Lie groups and Lie algebras, symplectic geometry and ergodic theory. Many modern mathematical theories arose from problems in mechanics and only later acquired that axiomatic-abstract form which makes them so hard to study.
本书的目录和前言已经译成中文,正文部分保留英文原版。另附北京大学医学部崔庆华副教授所作导读一篇。计算机和计算方法在生物和生物医学研究中的应用已经变得无处不在在过去的二十年中,那些基本算法没有改变,但是计算机速度和易用性获得巨大提升,同时计算机价格大幅下降。 对于计算机和计算方法在生物和生物医学研究中的应用,人们的一个普遍认识是这些应用要么是基本的统计分析,要不就是DNA序列数据的检索这些应用无疑非常重要,但它们只是揭开了当前或今后计算机和计算方法在生物医学研究领域的序幕《实验室解决方案:数值计算方法精要》涵盖广泛,包含多种计算机和计算方法在生物医学研究领域的应用,大大扩展了我们对该领域的认知。
本书系统地介绍了计算几何中的基本概念、求解诸多问题的算法及复杂性分析,概括了求解几何问题所特有的许多思想方法、几何结构与数据结构。全书共分11章,包括: 预备知识,几何查找(检索),多边形,凸壳及其应用,Voronoi图、三角剖分及其应用,交与并及其应用,多边形的获取及相关问题,几何体的划分与等分,路径与回路,几何拓扑网络设计,图形学习、推理及判定等。本书可作为高等院校计算机、自动化等专业研究生或本科高年级学生的教材或教学参考书,也可供软件开发人员、相关专业科技工作者参考。
科学家预言:“21世纪,人类将从经典信息时代跨越到量子信息时代。”创立了一个世纪的量子力学随着20世纪90年代与信息科学交叉融合诞生的量子信息学,已成为量子信息时代来临的重要标志。 本书是一部研究量子计算与量子优化算法的学术著作。在简要综述外该领域研究成果的基础上,主要篇幅介绍了作者近年来取得的创新性研究成果。全书共8章,主要内容包括:量子力学基础;量子计算基础;基本量子算法;Grover量子搜索算法的改进;量子遗传算法;混沌量子免疫算法,量子蚁群算法,量子粒子群算法;量子神经网络模型与算法;量子遗传算法在模糊神经控制器参数优化设计中的应用。 本书由浅入深、深入浅出、可读性好,具有系统性、交叉性、前沿性等特点。为便于学习,书中给出了多种量子优化算法在搜索、优化、聚类、识别与控制中的应用例
《散乱数据拟合的模型、方法和理论(第二版)》是应用数学与计算数学中有关曲面及多元函数插值、逼近、拟合的入门书籍,从多种物理背景、原理出发,导出相应的散乱数据拟合的数学模型及计算方法,进而逐个进行深入的理论分析。书中介绍了多元散乱数据拟合的一般方法,包括多元散乱数据多项式插值、基于三角剖分的插值方法、Boole和与Coons曲面、Sibson方法或自然邻近法、Shepard方法、Kriging方法、薄板样条方法、MQ拟插值法、径向基函数方法、运动最小二乘法、隐函数样条方法、R函数法等。同时还特别介绍了近年来国际上越来越热并在无网格微分方程数值解方面有诸多应用的径向基函数方法及其相关理论。
科学家预言:“21世纪,人类将从经典信息时代跨越到量子信息时代。”创立了一个世纪的量子力学随着20世纪90年代与信息科学交叉融合诞生的量子信息学,已成为量子信息时代来临的重要标志。 本书是一部研究量子计算与量子优化算法的学术著作。在简要综述外该领域研究成果的基础上,主要篇幅介绍了作者近年来取得的创新性研究成果。全书共8章,主要内容包括:量子力学基础;量子计算基础;基本量子算法;Grover量子搜索算法的改进;量子遗传算法;混沌量子免疫算法,量子蚁群算法,量子粒子群算法;量子神经网络模型与算法;量子遗传算法在模糊神经控制器参数优化设计中的应用。 本书由浅入深、深入浅出、可读性好,具有系统性、交叉性、前沿性等特点。为便于学习,书中给出了多种量子优化算法在搜索、优化、聚类、识别与控制中的应用例
《应用数值分析(第7版)》是为工科、理科、数学系、计算机科学系的大学本科2-3年级学生和工科研究生编写的应用数值分析教材或参考书,也是工程技术人员的一本很好的工具书。因为书中介绍了许多数值方法,所以它也可以作为科技工作者常用的、有价值的参考文献。 《应用数值分析(第7版)》包括:误差概念,非线性方程和方程组的解法,线性代数组的解法,插值和曲线拟合,函数逼近,数值微分和数值积分,常微分方程的数值解法,优化方法,偏微分方程,有限元方法。
丛书(第2辑):拉格朗日乘子定理》从一道2005年全国高中联赛试题的高等数学解法谈起,详细介绍了拉格朗日乘子定理的相关知识及应用,《 丛书(第2辑):拉格朗日乘子定理》共9章,读者可以较全面地了解这一类问题的实质,并且还可以认识到它在其他学科中的应用。
Many different mathematical methods and concepts are used in classical mechanics: differential equations and phase flows, smooth mappings and manifolds, Lie groups and Lie algebras, symplectic geometry and ergodic theory. Many modern mathematical theories arose from problems in mechanics and only later acquired that axiomatic-abstract form which makes them so hard to study.
《散乱数据拟合的模型、方法和理论(第二版)》是应用数学与计算数学中有关曲面及多元函数插值、逼近、拟合的入门书籍,从多种物理背景、原理出发,导出相应的散乱数据拟合的数学模型及计算方法,进而逐个进行深入的理论分析。书中介绍了多元散乱数据拟合的一般方法,包括多元散乱数据多项式插值、基于三角剖分的插值方法、Boole和与Coons曲面、Sibson方法或自然邻近法、Shepard方法、Kriging方法、薄板样条方法、MQ拟插值法、径向基函数方法、运动最小二乘法、隐函数样条方法、R函数法等。同时还特别介绍了近年来国际上越来越热并在无网格微分方程数值解方面有诸多应用的径向基函数方法及其相关理论。
丛书(第2辑):拉格朗日乘子定理》从一道2005年全国高中联赛试题的高等数学解法谈起,详细介绍了拉格朗日乘子定理的相关知识及应用,《 丛书(第2辑):拉格朗日乘子定理》共9章,读者可以较全面地了解这一类问题的实质,并且还可以认识到它在其他学科中的应用。