本书采用大量图片,通过详细的分步讲解,以直观、易懂的方式展现了各种数据结构和算法的基本原理。第1章介绍了链表、数组、栈等数据结构;从第2章到第8章,分别介绍了和排序、查找、图、安全、聚类、数据压缩等相关算法,较为全面地介绍常见算法与数据结构知识。 本书没有枯燥的理论和复杂的公式,而是通过大量的步骤图帮助读者加深对数据结构原理和算法执行过程的理解,易于理解,便于学习和记忆。将本书作为算法入门的第一步,是非常不错的选择。
本书示例丰富,图文并茂,以简明易懂的方式阐释了算法,旨在帮助程序员在日常项目中更好地利用算法为软件开发助力。前三章介绍算法基础,包括二分查找、大O表示法、两种基本的数据结构以及递归等。余下的篇幅主要介绍应用广泛的算法,具体内容包括:面对具体问题时的解决技巧,比如何时采用分而治之、贪婪算法或动态规划,哈希表的应用,图和树算法,K最近邻算法等。这一版将示例代码更新到了Python 3,并新增了两章专门讨论树,加之诸多修订,使得内容更加完善。
《深入浅出算法竞赛(图解版)》是为帮助读者理解基本的算法思想和编写高效的解决问题的程序而编写的。全书共6章,第1章概述了算法与算法竞赛的知识;第2章介绍了计算机程序解决问题的基本方法 穷举算法与贪心算法;第3章讲解了随机算法,如何利用概率与期望优化算法的效率;第4章讲解了AI的思维模式 搜索算法,如何用更灵活的方式遍历每一种可行解;第5章讲解了动态规划,如何通过状态间的转移,巧妙地规划解;第6章讲解了将大事化小、小事化了的分治算法,如何将问题拆分为易于解决的小问题。 本书配备了大量的算法竞赛试题,使用算法竞赛常用的C 语言编写。同时,本书不拘泥于算法竞赛,在第2 ~ 6章的后每一节给出一段阅读材料,介绍算法有趣的应用,帮助读者拓宽思维。 本书的讲解避开了繁琐枯燥的理论,采用浅显易懂的语言和大量生动
本书图文并茂、通俗易懂,详细讲解常用的算法知识,又融入大量的竞赛实例和解题技巧,可帮助读者熟练应用各种算法解决实际问题。本书总计8章。第1章讲解STL,涉及双端队列、优先队列、位图、集合、映射和STL中的常用函数;第2章讲解实用的数据结构,涉及并查集、倍增、稀疏表、区间最值查询、最近公共祖先、树状数组和线段树;第3章讲解查找算法,涉及散列表、字符串模式匹配和字典树;第4章讲解平衡树,涉及树高与性能、平衡二叉搜索树、树堆和伸展树;第5章讲解图论提高方面的知识,涉及连通图与强连通图、桥与割点、双连通分量的缩点和Tarjan算法;第6章讲解图论算法,涉及最小生成树、最短路径、拓扑排序和关键路径;第7章讲解搜索算法提高方面的知识,涉及剪枝优化、嵌套广度优先搜索、双向广度优先搜索和启发式搜索;第8章讲解动态规划
这是一本关于 高级/进阶 算法和数据结构的图书,主要介绍了用于Web应用程序、系统编程和数据处理领域的各种算法,旨在让读者了解如何用这些算法应对各种棘手的编码挑战,以及如何将其应用于具体问题,以应对新技术浪潮下的 棘手 问题。 本书对一些广为人知的基本算法进行了扩展,还介绍了用于改善优先队列、有效缓存、对数据进行集群等的技术,以期读者能针对不同编程问题选出更好的解决方案。书中示例大多辅以图解,并以不囿于特定语言的伪代码以及多种语言的代码样本加以闸释。 学完本书,读者可以了解高级算法和数据结构的相关内容,并能运用这些知识让代码具备更优性能,甚至能够独立设计数据结构,应对需要自定义解决方案的情况。 本书可作为高等院校计算机相关专业本科高年级学生以及研究生的学习用书,也可供从事与算法相关工作
本书将数学理论与实例相结合,这些实例以*先进的通用机器学习框架为基础,由Python实现,向读者介绍更复杂的算法。全书共25章,包括机器学习模型基础、损失函数和正则化、半监督学习导论、高级半监督分类、基于图的半监督学习、聚类和无监督学习模型、高级聚类和无监督学习模型、面向营销的聚类和无监督学习模型、广义线性模型和回归、时序分析导论、贝叶斯网络和隐马尔可夫模型、*大期望算法、成分分析和降维、赫布学习、集成学习基础、高级提升算法、神经网络建模、神经网络优化、深度卷积网络、循环神经网络、自编码器、生成对抗网络导论、深度置信网络、强化学习导论和高级策略估计算法。
为了帮助有一定编程基础的人群进一步提升自己的Python编程水平及应对编程工作的压力,《算法实例精讲 Python语言实现》全面讲解了9种经典算法理论、65个典型实例的算法设计与分析以及Python语言的代码实现过程。首先从Python数据结构基础入手,然后讲解了各种算法,包括排序算法、动态规划算法、双指针算法、深度优先搜索算法、广度优先搜索算法、贪心算法、递归算法、分治算法、回溯算法等,*后归纳了数据结构中的一些经典问题。这既能帮助初学者理清算法的基本结构,融会贯通地掌握好算法基础知识;又能帮助有一定工作经验的读者巩固基础,进一步提升编程水平;也能帮助求职者为未来面试与工作做好必要的知识储备。 《算法实例精讲 Python语言实现》理论基础与实例应用相结合,实例分析与图解相结合,每个实例均设有详细的思路解析和代码实现,
自动驾驶汽车、自然语言识别、内容推荐引擎的实现都离不开人工智能和机器学习算法。机器学习算法只有在解决具体问题时才能体现价值。本书以解决各种趣味问题为目标,教读者用Python、JavaScript、C 编写机器学习算法,内容深入浅出,兼具实用性与大局观。读者将学习编写遗传算法、启发式算法、爬山算法、模拟退火算法,运用蒙特 卡洛模拟、点格自动机、适应函数解决问题。本书尤其适合对人工智能和机器学习感兴趣的程序员进阶学习。
本书从一系列有趣的生活实例出发,全面介绍了构造算法的基础方法及其广泛应用,生动展现了算法的趣味性和实用性。书中介绍了算法在多个领域的应用,如图像处理、物理实验、计算机图形学、数字音频处理、机器学习等。其中,既有各种大名鼎鼎的算法,如神经网络、遗传算法、离散傅里叶变换算法、KNN、贝叶斯算法,也有不起眼的排序和概率计算算法。本书讲解浅显易懂而不失深度和严谨,对程序员有很大的启发意义。书中所有示例都与生活息息相关,充分地展现了算法解决问题的本质,让你爱上算法,乐在其中。本书在第1版的基础上新增了图像处理算法、游戏开发中检测碰撞常用的分离轴 (SAT)算法、垃圾邮件过滤相关的算法、中文分词算法、限流算法、手写数字识别和变声器等,进一步提升趣味性。 本书适合软件开发人员、编程和算法爱好者以及
本书基于Python语言介绍了数据结构与算法的基本知识,主要内容包括抽象数据类型和Python面向对象程序设计、线性表、字符串、栈和队列、二叉树和树、集合、排序以及算法的基本知识。本书延续问题求解的思路,从解决问题的目标来组织教学内容,注重理论与实践的并用。
物联网、人工智能、大数据解析和机器人工学等,日新月异的科学技术每天都在给人类的生活带来重要的变化。身处这样的一个时代,我们面临一个选择,即怎样面对日新月异的科学技术的发展。在这样的变化中,是作为被动的一方,还是成为主动的一方,抑或是站在时代的前端成为创造的一方?这将取决于我们的选择。只要我们不想成为被动的一方,掌握编程的基本技能就是必不可少的。 本书从讲解学习编程的益处出发,向读者介绍了*好的学习编程的方法。紧接着,介绍了主要编程工具的概要和特点,包括 编程一小时 点灯机器人 Scratch 编码猴 等编程工具。了解这些编程工具后,书中又教读者使用 Scratch 从头到尾制作了一个游戏,从而提高他们的编程技能。*后,作者分析了各编程语言的特点,并为读者学习编程提供了真正有益的指导。本书讲解由浅入深,
深度学习是目前学术界和工业界都非常火热的话题,在许多行业有着成功应用。本书由Hulu的近30位算法研究员和算法工程师共同编写完成,专门针对深度学习领域,是《百面机器学习:算法工程师带你去面试》的延伸。全书内容大致分为两个部分,第一部分介绍经典的深度学习算法和模型,包括卷积神经网络、循环神经网络、图神经网络、生成模型、生成式对抗网络、强化学习、元学习、自动化机器学习等;第二部分介绍深度学习在一些领域的应用,包括计算机视觉、自然语言处理、推荐系统、计算广告、视频处理、计算机听觉、自动驾驶等。本书仍然采用知识点问答的形式来组织内容,每个问题都给出了难度级和相关知识点,以督促读者进行自我检查和主动思考。书中每个章节精心筛选了对应领域的不同方面、不同层次上的问题,相互搭配,展示深度学习的“百