《怎样解题:数学思维的新方法》是靠前有名数学家波利亚论述中学数学教学法的普及名著,对数学教育产生了深刻的影响。波利亚认为中学数学教育的根本宗旨是教会年轻人思考,他把“解题”作为培养学生数学才能和教会他们思考的一种手段和途径。《怎样解题:数学思维的新方法》是他专门研究解题的思维过程后的结晶。《怎样解题:数学思维的新方法》的核心是他分解解题的思维过程得到的一张“怎样解题”表。作者在书中引导学生按照“表”中的问题和建议思考问题,探索解题途径,进而逐步掌握解题过程的一般规律。书中还有一部“探索法小词典”,对解题过程中典型有用的智力活动做进一步解释。
《费马大定理:一个困惑了世间智者358年的谜》是关于一个困惑了世间智者358年的谜题的传奇。《费马大定理:一个困惑了世间智者358年的谜》既有振奋人心的故事讲述方式,也有引人入胜的科学发现的历史。西蒙·辛格讲述了一个英国人,经过数年秘密辛苦的工作,终于解决了挑战性的数学问题的艰辛旅程。
《自然哲学的数学原理》是牛顿的科学才华处于时期所写的旷世巨著,是他“个人智慧的结晶”。牛顿不但总结出了力学的基本定律,而且还发现了证明这些定律的数学方法,奠定了数学成为描述宇宙运动的语言的基础。在《自然哲学的数学原理》之后,人类在自然科学中的成就层出不穷,但这些成就无一不与这部非凡的著作息息相关。牛顿提供了科学思维体系的样板。《自然哲学的数学原理》标志着经典力学体系的建立,是人类科学史乃至整个人类文明史中的不朽巨著。《自然哲学的数学原理》不仅影响着自它面世后的300年里的自然科学领域,而且对人类的宇宙观也产生了深刻的影响。
数学到底是一种由行家施展身手来表演如何化解难题的高度复杂的智力游戏,还是数学家在探索数学实在这一独立领域过程中所带来的发现?为什么这个看似抽象的学科能够提供打开物理宇宙深层秘密的钥匙?如何回答这些问题将明显影响着我们对实在的形而上的思考。 世界数学家、数学物理学家和数学哲学家们在本书中对这些问题进行了探讨。每一章后都有一篇由其他作者给出的对本章的简短评论。这些评论既让我们看到由此引发的进一步问题,又展现了这些发人深省的争论中的危机根源。《数学的意义》一书适合对数学与实在关系问题感兴趣的任何层次的读者阅读,它对数学家和科学哲学家非常有用,为他们研究这一迷人的课题提供了全新的视角。
《模糊数学与rough集理论》主要讲述模糊集与粗糙(rough)集的基本理论和若干应用专题,基本理论包括:模糊集合的基本概念和运算,模糊集合的分解定理、表现定理及扩张原理,模糊数、模糊关系、模糊积分,模糊逻辑与模糊推理;粗糙集的基本概念,属性约简,模糊粗糙集,直觉模糊粗糙集.应用专题包括模糊模式识别、模糊综合评价、模糊聚类分析、模糊控制、模糊数学在管理决策中的应用,以及粗糙集在相关领域中的应用实例. 《模糊数学与rough集理论》注重理论与应用密切结合,淡化抽象的理论推导,精选典型的应用实例,重点阐述模糊数学与粗糙集理论的思想方法及其应用价值.本书适合于各专业大学生、研究生学习和参考,特别适宜于数学类专业(数学与应用数学、信息与计算科学)、计算机科学与技术专业、自动化专业、智能科学与技术专业、经
《Mathematica基础及其在数学建模中的应用》是作者结合多年的Mathematica与数学建模课程教学实践编写的,其内容包括Mathematica软件介绍、Mathematica应用基础、Mathematica在高等数学中的应用、Mathematic性代数中的应用、Mathematica在概率统计中的应用、利用Mathematica编程、Mathematica在数值计算及图形图像处理中的应用、Mathematica在绘制分形图中的应用、Mathematica在数学建模中的应用共9章。书中配备了较多关于Mathematica与数学建模的实例,这些实例是学习Mathematica与数学建模必须掌握的基本技能。