中子散射已成为在原子尺度上研究材料性质的关键技术。其独特性在于热中子的波长和能量分别与凝聚态物质中的原子间距和激发能量相当;因此,中子散射技术可直接用于研究材料的静态性质以及动力学性质。此外,中子有磁矩,在磁性研究方面具有独特的优势。《中子散射在凝聚态物理中的应用》介绍了中子散射的基本原理及相关实验仪器,讲述了凝聚态物理中重要的一些物理现象及材料性质,并以典型的中子散射实验为例,着重阐释了如何从实验测量中提取并分析相关的重要信息。
本书介绍了过去三十年发展起来的张量网络态重正化群理论。本书首先介绍了张量网络态的分解和取值所需的张量代数基础。之后,本书又介绍了量子态的张量网络表示、量子算子、配分函数(例如矩阵乘积态)、投影纠缠对态等。 接下来,本书又介绍了密度矩阵重正化群(DMRG)及其各种拓展,比如动量空间DMRG、经典或量子跃迁矩阵重整化群方法、时间依赖DMRG、动力学DMRG等。 本书适合凝聚态物理,特别是张量网络态领域的科研工作者参考,也可用于初入此研究方向的青年学者学习。
理解磁的量子本性有助于新磁性材料的开发,这些材料可用于永磁体,传感器以及信息存储。要开发这些应用需要掌握基本的物理原理,如对称性破缺、序参量、激发、阻挫以及约化维度。本书从电磁学与量子力学的基本概念开始,合理地阐述了上述理论。书中概述了原子中磁矩的起源以及在晶体内部这些磁矩是如何受局域环境影响的,还介绍了磁矩间的各种不同类型的相互作用。最后几章专门论述金属的磁性和当竞争磁相互作用存在及体系具有约化维度时的复杂行为。全书理论原理与实际应用相结合,充分讨论了实验技术以及当前研究的热点。本书包括一百多张插图以及一些关于基本原理的附录。本书可供高年级本科生以和低年级研究生使用。
现代凝聚态和超冷原子物理的实验发展对理论学家来说是巨大的挑战。该书以利于教学的方式介绍了粒子物理中的量子场论,重点介绍了该理论在具体问题中的应用。 第2版包括两个新的章节,研究用路径积分分析经典量子非平衡态的问题。其他章节涵了多体技术和泛函积分,重整化群方法、响应函数理论和拓扑学。该书重点介绍了基本概念和规范化方法操作,但是讨论部分集中在凝聚态物理及其相关领域研究现场的实验应用上。