1维单形就是线段,2维单形就是三角形,3维单形就是四面体,从三角形、四面体到高维单形有一系列有趣的结论和优美的公式与不等式,《从高维Pythagoras定理谈起:单形论漫谈》详尽地介绍了1000余个结论、公式、不等式及其推导、证明。从三角形到四面体,再到高维单形,其周界从线段变到三角形面,再变到体、超体,其两边夹角变到线线角、线面角、面面角,再变到维度角、级别角等,这就要用到新的数学工具来处理。《从高维Pythagoras定理谈起:单形论漫谈》系统地介绍了单形的一般概念、特性及其理论,介绍了从单形的周界向量表示到引入k重向量,从单形的顶点向量表示到引入重心坐标,从研究同一单形中的有趣几何关系到研究多个单形间的奇妙几何关系式,引导读者进入用代数方法研究几何问题的神奇数学世界。 《从高维Pythagoras定理谈起:单形论漫
本书被公认为是一套概率论方面的标准经典教科书,供高年级大学生和研究生使用,同时也是概率论和统计学方面研究人员经常使用的参考书。本书把概率论建立在严格的逻辑基础上,理论体系完整。在第4版中增加了距离空间测定、游动、布朗运动及不变原理四部分,后两部分尤为精彩。全书除引言外,两卷共分五部分,卷包括三部分,涉及概率论的基本概念和数学手段。读者对象:数学及相关专业的研究生。
书系统介绍作者及其研究团队30多年来所建立的一系列具有优良性质的新型特殊多场变量有限元。这些元以其精度高、计算量少、既适用于各向同性材料也适用于各向异性材料、可方便快捷地分析多种复杂边界条件下多类槽孔的三维应力等突出优点,反映了有限元学科在解决应力集中等问题的前沿性进展,引起外学者的关注。《BR》 这些特殊元不仅为一直难以解决的多类槽孔三维应力集中及多类曲面附近的三维应力分析,提供了新的计算方法;也为目前难以破解的槽孔层板破坏机理,展示了新的探讨途径。《BR》 作者建立的单元程序及麻省理工学院(MIT)的FEABL程序(及其扼要说明)(见附录C)可从下载,读者可直接用它们求解多类槽孔及曲面附近的三维应力分布。同时,也可以通过当前通用程序所开窗口,将这些杂交应力元的单元程序与位移元通用程序连接,进行
《概率论札记》是作者的“工程数学系列札记”的第四本。前三本分别是《矢算场论札记》(2007)、《复变函数札记》(2011)、《矩阵论札记》(2014)。尽管四本书所涉及领域完全不同,但却有着完全一致的目标,即想建立某种工程数学类型,使读者能自如跨越数学与工程之间的桥梁。 《概率论札记》的核心主题是概率,研究的目标是事件的统计规律。用一句话概括,即事件反映单体的不可预洲性,而统计规律反映群体的频率稳定性。 《概率论札记》包括慨率论基础、量分布和数字特征、大数定律、抽样分布到统汁回归等。书中讨论了慨率论的应用实例,丰富的附录可以给广大工程技术人员带来很大的方便。 《概率论札记》适合广大理工科本科生、硕士和博士研究生学习使用。还可以作为相关专业科技与工程技术人员的入门读物和工具书。
The first part of thiook oDiscrete Subgroups of Lie Groups is writteby E.B. Vinberg, V.V. Gorbatsevich, and O.V. Shvartsman. Various types of discrete subgroups of Lie groups arise ithe theory of functions of plex variables, arithmetic, geometry, and crystallography. Since the foundatioof their general theory ithe 50-60s of this century, considerable and imany respects exhaustive results were obtained. This development is reflected ithis survey. Both semisimple and general Lie groups are considered. Part II oCohomologies of Lie Groups and Lie Algebras is writteby B.L. Feigiand D.B. Fuchs. It contains different definitions ofcohomologies of Lie groups and (both finite-dimensional and some infinite-dimensional)Lie algebras, the maimethods of their calculation, and the results of these calculations. The book cabe useful as a reference and research guide to graduate students and researchers idifferent areas of mathematics and theoretical physics.