★张益唐、吴军力荐! 国民教师 李永乐数学科普作品! ★神奇提分、神奇爱上数学!让孩子更接近自己的名校梦! ★不一样的数学思维,让孩子鹤立鸡群 ★开拓数学眼界,训练数学思维,感受数学之美 ★开启青少年数学思维,开拓数学视野 ★不枯燥、不无聊,100 脑洞大开的问题,神奇的数学太好玩了! ★严谨的解读 有趣的生活案例,数学竟然如此有趣! 《神奇的数学》,6大数学门类,100 脑洞大开的问题:考清华和中500万元哪个更难?葫芦娃救爷爷,为啥一个一个上?一个西瓜切4刀,最多有几块?如何公平地切蛋糕?囚徒困境是怎么回事?香蕉皮和橘子皮,谁能展成平面? 数学从未如此好玩!
从数学的角度来看,世界是由微分和积分构成的。因此,学习微积分就是我们主动了解我们生活的世界的一种方式。微积分在数学中占据着重要的地位,是一个充满数学魅力和乐趣的领域。 然而,微积分的理论性非常强,学习难度大,是最容易挫伤学生学习数学积极性的部分之一。为了最大限度地发挥学生的主观能动性,在最短的时间内抓住并阐明本质,本书以师生对话的方式,配以简单的图片,用浅显易懂的文字说明了微积分的基本原理。 本书共包括四个部分,分别是:课前准备、60分钟揭开微积分神秘面纱的四大步骤、所谓 微分 是指什么?、所谓 积分 是指什么?。 本书通过日常生活中的常见事例说明了微积分的基本原理、公式推导过程及实际应用意义。本书讲解循序渐进,生动亲切,没有烦琐复杂的计算过程,是一本写给不擅长数学的成年人的学习微积
本书是一本可以激发读者数学兴趣,启迪数学思维,开阔知识眼界的妙趣横生的数学科普读物。 全书共五章,从不同角度诠释数学之美。 第一章:生活中美丽的数学 从日常点滴中窥见数学之美。从投资理财到项目管理,从密码学到代数几何,数学已渗透到我们生活中的每一个角落。 第二章:上帝的骰子 排列组合与概率 用生动有趣的案例带你领略概率的巧思与随机的神奇。 第三章:囚徒的困局 逻辑推理、决策、斗争与对策 带你体验推理、决策、博弈的乐趣,做一把福尔摩斯 第四章:中外古代趣题拾零 追寻古圣先贤的足迹,带你体会中外数学的智慧 第五章:当数学遇到计算机 从计算机的二进制世界到数码相片,从5G通讯到区块链的实现,本章带你从高科技中发现数学的智慧之光。
无穷大到底有多大?空间有内外之分吗?原子是如何构成的?三维世界的我们如何想象四维空间?生物与非生物的界限在哪里? 《从一到无穷大》以生动有趣的语言,深入浅出地介绍了数学、物理学、生物学及天文学的基本概念与前沿知识。从基础的数学概念如大数与无穷大,到相对论、量子力学等深奥理论,再到生物遗传、宇宙结构等宏大议题,通过一个个故事串联,将复杂的科学概念变得易于理解,让我们在享受阅读乐趣的同时,拓宽科学视野,领略自然科学的魅力。无论是对科学感兴趣的初学者还是有一定科学基础的读者,都能从中受益匪浅。
这是一本通俗的数学史读物,集结了数学史上那些令人尖叫的闪耀时刻,为读者展示每一个时刻给人类文明带来的后果和相互交织的影响。 如果说,数学是上帝给人们的说明书,那这本书就是对说明书的解读。 欧几里得以外的宇宙不是只有三维, 虚数的由来从一段背叛的历史中产生, 无理数的发现居然来自法老王的挑战, 自然数0中充满禅意的虚无解脱了人们对自然数的认识 数学的浪漫和璀璨,远远比你想象中要简单!
本书主要涉及大一上学期要学的一元微积分,书中从高中阶段十分熟悉的数列出发,引出数列极限的概念,进而引出函数极限的定义,并由此引申出导数、微分、积分,其间穿插讲解无穷小量、无穷大量、函数凹凸性、极值与最值等内容,并简单介绍了各类中值定理(罗尔中值定理、拉格朗日中值定理、柯西中值定理)、洛必达法则、泰勒公式等常用定理和公式。全书语言幽默,文风轻快,用较短的篇幅将微积分入门的基础概念生动地展示出来。 这是为大一新生而写的数学书,主要有以下特点: 1.尽量由中学数学知识引出大学数学的内容; 2.不面面俱到,不追求绝对严谨; 3.通俗易懂, 保姆级 的讲解; 4.借用国学精粹引入数学概念; 5.适当讲述数学典故,激发学习兴趣; 6.穿插一些数学幽默小故事,缓解学习的紧张感; 7.让数学与生活挂钩; 8.玩梗,也
《九章算术》是人类科学史上应用数学的 算经之首 ,也是中国古代算法的扛鼎之作,更是一部与《几何原本》并列为世界两大数学体系的代表作。全书总共收集246个数学问题并提供其解法,这些算法要比欧洲同类算法早1500多年,对世界数学发展产生了重要影响。 《九章算术》提出正负数的概念,特别是负数概念的提出,是人类关于数的认识的一次重大飞跃。在印度,直到7世纪才出现负数的概念;而欧洲比印度还晚1000年,直到17世纪才有人提出负数的概念。 《九章算术》提出 盈不足术 ,即用两次假设,可以把一般方程式化为盈不足问题,用 盈不足术 求解。而这一解法,直到13世纪才由阿拉伯人传至欧洲,被欧洲人称为 契丹算法 (即 中国算法 )。 《九章算术》系统叙述了分数的约分、通分和四则运算法则,提出了 线性方程组 的概念,并系统地总结了它
你会因为进行简单的计算而对数学感到厌烦吗?你会随着数学学习的深入,因为不知道如何解答而对数学学习产生畏难情绪吗?你会因为感到学习困难而认为数学没有意思,认为数学就是枯燥无味的吗? 本书会帮你解决这些问题,颠覆你对数学学习的印象。 本书共27个主题,作者将每道题目的第1问设计成稍微思考,或者看一下 解题方法 便可明白,从第2问开始设计成能够轻松 挑战 的形式。让读者保持一种节奏良好的游戏感。 由浅入深,由简单到困难,把题目设置成不同的阶梯挑战,慢慢建立数学学习信心;不同的解题角度,打开你的数学学习思路,只有你想不到没有你做不到,让你越做越有趣,彻底爱上数学学习。 快点来进行挑战吧,每天一个主题,获得 智慧带来的喜悦 。
《哆啦A梦》中很巧妙地融入了爱因斯坦的理论?人类身上蕴含着对数?其实,我们的身边充满了数学原理。 数学是人类倾注心血凝结而成的智慧结晶,是*宝贵的知识财富。如此有趣的故事,却被教科书讲述得无聊至极,这实在是令人感到万分遗憾。 本书是关于作者选出的数学家、物理学家们的故事。它其实更是一本将年轻人领入数学世界的全明星阵容介绍:纳皮尔、牛顿、爱因斯坦、仁科芳雄、拉马努金 他们的人生和伟绩,曾经深深地触动了无数爱好数学的心灵。 数学这个故事,此时此刻也正产生新的发现,这是一个 Never Ending Story(永无结局的故事) 。
个完整的科学的宇宙论和科学理论体系, 奠定科学素养 《自然哲学之数学原理》是人类掌握的个完整的科学的宇宙论和科学理论体系,其影响遍布了经典自然科学的所有领域。牛顿总结了近代天体力学和地面力学的成就,为经典力学规定了一套基本概念,提出了力学的三大定律和万有引力定律。全书分为四个部分,首先对书中的定义和运动定律做了说明,从物体的各种运动形式和在阻滞介质中摆体的运动,到宇宙星体的运动详细论述。这本书意味着经典力学的成熟,其中所建立的经典力学的理论体系成为近代科学的标准尺度。
本书将两千多年的数学发展历程融为十二章内容,每章都包含了三个基本组成部分,即历史背景、人物传记以及在这些 数学杰作 中所表现出的创造性。作者精心挑选了一些杰出的数学家及其所创造的伟大定理,如欧几里得、阿基米德、牛顿和欧拉。而这一个个伟大的定理,不仅串起了历史的年轮,更是串起了数学这门学科所涵盖的各个深邃而不乏实用性的领域。当然,这不是一本典型的数学教材,而是一本大众读物,它让热爱数学的人体会到绝处逢生的喜悦,让讨厌数学的人从此爱上数学。
本书是 对整个数学领域中的基本概念及方法的透彻清晰的阐述。 ■ A 爱因斯坦 本书既是为初学者也是为专家,既是为学生也是为教师,既是为哲学家也是为工程师而写的。《什么是数学》是一本数学经典名著,它搜集了许多闪光的数学珍品,它们给出了数学世界的一组有趣的、深入浅出的图画。本书传至今日,又由I 斯图尔特增写了新的一章。此版以新的观点阐述了数学的*进展,叙述了四色定理和费马大定理的证明等。这些问题是在柯朗与罗宾写书的年代尚未解决,但现在已被解决了的。 形式数学(formal mathematics)就像拼写与语法 只是对局部规则(local rules)的正确使用。有意义的数学(meaningful mathematics)有如新闻工作 它只讲述有趣的故事,但又不像某些新闻报道,因为它的故事必须真实。而*美的数学(the best mathematics)则如文学 它将故事栩
无
本书通过作者的生活经历、思考和爱好,以及对艺术的理解,从一个全新的角度谈音乐和数学的关系。主要内容包括:历史上的音乐数学,声学,乐理、乐器、曲风和数学的关系,以及数学和计算机音乐。本书较为全面、深入地展示数学和音乐关系那吸引人的神奇。该书涉及大量的数学音乐,其中也包括非常动听的AI谱曲。这本书视角之独特、内容之新颖,可使不少人文艺鉴赏的同时,改变对数学枯燥的偏见,必将起到积极的作用。本书适合有高中以上数学基础的音乐爱好者。
本书使用文字语言、符号语言和图形语言相结合的方式介绍了折纸几何学的7个基本公理,并通过举例说明了折纸基本公理的操作过程,给出了折纸操作的基本性质。用A4纸和正方形纸,使用统一的折纸操作语言,按照“折一折”、“想一想”、“做一做”结构,给出了平面基本图形的折叠方法,讨论了2长方形、3长方形和黄金长方形的折叠过程及相关的数学问题。通过将平面基本图形折叠成一个无缝无重叠的长方形,讨论了多边形的面积公式。利用折纸基本公理对平面基本图形进行分解与合成,探索了分数运算的算理,给出了一次、二次和三次方程解的折叠方法。 本书还从数学课堂教学原理和数学课堂教学艺术的角度出发,结合中小学数学课程对“数学活动”的基本要求,以中小学数学教材为范本,按照“折一折、想一想、做一做”的教学模式给出了“垂线的
无
1分钟为什么有60秒?两千多年前的人如何测量地球的周长?计算机与程序员的真正鼻祖分别是谁?猴子多了就能写出莎士比亚吗?一只蝴蝶如何引发龙卷风? 本书从科学史的角度,依照时间顺序介绍了有史以来具有突破性的50个重大数学发现。这些发现不仅是数学这门学科的飞跃,也影响着人类生活和世界科技的发展:从远古人类在骨头上留下的计数刻痕,到只需按下按钮就能自行运算的机器,现代社会的几乎每一个进程和模式都以数学为核心。在这些问题的发现、探索和解决中,数学的纯粹和逻辑之美尽数体现。不论你感兴趣的是算术、几何、统计、逻辑学还是计算机科学,这本书都能让你找到许多有趣且深具启发性的解答。翻开这本书,你就能进入这个用头脑构建出的世界,感受数学家们的奇思妙想。
数学作为重要的基础学科,是我们面向未来的重要工具和能力。但问题是,我们如何摆脱数学学习的枯燥甚至是畏难情绪,提升数学教育的质量,真正地享受数学,热爱数学,并愿意钻研数学。 《数学的力量》以诚挚的语言告诉我们,学好数学实际上是人类的天性,只是很多人都被埋没了。数学中蕴含着意义、美、探索、自由、真理、奋斗等各种优秀的品格,和我们个体的内在追求是高度契合的。我们每个人实际上都可以发现数学之美,感受数学之乐,重要的是通过正确的方式去唤醒它们。 这是一本契合时代的动人之作,希望每个人都可以从中看到不一样的数学,转变数学认知,重塑数学思维。
《数学的故事》是一部历史、传记及大众科学的巧妙集成,它以一种全新的形式向我们展示伴随着人类社会进步和变革,数学是如何适应社会、宗教、文化和艺术的需求逐渐发展至今的。作者把自己对数学的深挚热爱倾注于字里行间,用浅显易懂但又不平庸的语言,将数学这门深奥和复杂之学科的发展轨迹和内在动因生动地描绘出来。