本书重点介绍Amos、Mplus 和SmartPLS 统计软件里的结构方程分析方法。包括结构方程模型路径图的构建与数据的收集,结构方程模型的识别、分析结果评价及修正,反映型指标、形成型指标与二阶段分析,调节效应分析、中介效应分析、多群体差异分析与潜在平均分析,以及结构方程模型高级的分析方法即贝叶斯检验、混合回归分析、潜在成长模型、MTMM 模型等内容。没有复杂的理论推导,而是结合作者自身的教学与科研实践,以数据为依托,深入浅出,使读者能在短时间内理解并掌握结构方程模型分析方法,进而应用到自己的研究实践中。
本书紧密围绕商业运作的需要来强调数据在经营活动中的实践应用,采用项目驱动方式,通过实训为指导来强化数据库相关知识点的深入学习。全书始终围绕网络书店销售管理系统为例子,通过共9章内容系统展示了从系统应用需求分析开始到数据库设计、数据库实现、网络数据库开发、数据库管理程序开发等一系列以满足商业需求为发端的、以数据库开发应用为线索的相关工作。这种一以贯之的学习方式提高了学习的成就感与目标性,有助于提高对于新管理实践和新技术发展的理解和掌握。
本书介绍了数据工程的基本概念和理论基础,围绕数据资源建设的规划和管理问题,介绍数据资源规划和管理的概念、特征、作用和功能,系统介绍了数据资源规划理论的发展过程、核心思想基础、主流方法体系和具体实施步骤,以及数据资源管理涉及的治理、质量、集成等理论知识、支撑平台、关键技术和主流工具。本书内容划分为数据工程基础篇、数据资源规划篇、数据资源管理篇三个部分,其中数据工程基础篇涵盖数据工程概述、数据标准、数据模型等内容,数据资源规划篇涵盖数据资源规划理论、规划方法、需求分析、模型构建、实践与工具等内容,数据资源管理篇涵盖数据治理、数据质量管理、数据集成、数据中台等内容。 本书既可以作为高等院校信息管理与信息系统、信息资源管理、大数据工程以及计算机信息管理等专业本科生的教材,还
本书系统讲授数据挖掘的原理、主要方法及其Python实现,共分三部分:第一部分包含第1~2章,介绍数据挖掘的基本概念、流程和数据预处理;第二部分包含第3~11章,介绍经典的分类算法(包括朴素贝叶斯分类器、决策树、k-近邻、支持向量机等)、经典的聚类分析、关联分析、人工神经网络和Web挖掘等方法;第三部包含第12~14章,共有3个综合案例,包括泰坦尼克号生存数据分析、心脏病预测分析和旅游评论倾向性分析。
数据清洗是大数据领域不可缺少的环节,用来发现并纠正数据中可能存在的错误,针对数据审查过程中发现的错误值、缺失值、异常值、可疑数据,选用适当方法进行 清理 ,使 脏 数据变为 干净 数据。本书共分为8章:第1章主要介绍数据清洗的概念、任务和流程,数据标准化概念及数据仓库技术等;第2章主要介绍Windows和类UNIX操作系统下的数据常规格式、数据编码及数据类型转换等;第3章介绍ETL概念、数据清洗的技术路线、ETL工具及ETL子系统等;第4章介绍Excel、Kettle、OpenRefine、DataWrangler和Hawk的安装及使用等;第5章介绍Kettle下文本文件抽取、Web数据抽取、数据库数据抽取及增量数据抽取等;第6章介绍数据清洗步骤、数据检验、数据错误处理、数据质量评估及数据加载;第7章介绍网页结构,利用网络爬虫技术进行数据采集,利用JavaScript技术进行行为日志数据采集
本书主要围绕南京图书馆非物质文化遗产影像资源的采集、制作、加工、传播以及数据库建构这几个方面展开,对近十年来的工作加以总结和思考,对非遗影像的制作和收藏提出建设性的意见。本书共分为九章,层层递进。第一章主要介绍公共图书馆与非物质文化遗产的关系,阐述其中的渊源,引出公共图书馆的非遗影像制作工作的必要性和重要性。第二章主要介绍南京图书馆十年来非遗影像数据库的建构历程,介绍工作经验和基本情况。第三章从《何处忆江南》这个项目来分析非遗影像专题中对非遗项目的选择标准。第四章从技术层面介绍南京图书馆外拍团队的拍摄技术和后期剪辑技术。第五章以《何处忆江南》这个项目分析非遗影像中非遗传承人的选择和人物的形象架构。第六章从视听语言角度,分析非遗影像的声音和画面,如何做到声画的统一。第七章从精
数据作为新型生产要素,推动经济发展、提升生产力。本书从数据的基础认知、数据圈的诞生和发展以及数据蕴含的未来等角度开始谈起,进一步讨论了数据全生命周期管理的核心节点,以及企业数据应用和管理的难点与重点,最后从数据传统应用的不同领域进行解读分析,全面阐释了什么是数据、数据的应用以及数据的未来等内容。通过本书,读者可以感受到数据开启的美好新时代,也可以预期在各行各业中,数据拥有将不可能变为可能的超能力。全书共9章。第1章为基础章节,着重介绍了数据基本认知,包括数据起源、概念以及不断膨胀的数据圈;第2章对数据的不同类型、数据来源以及数据的创建位置等进行了深入介绍,让读者对数据有更全面的认知;第3章对于当前的数据以及数据的未来进行了分析和探讨; 第4~9章重点着墨于数据的应用,介绍了数据全生命
时间序列分析是统计学科的一个重要分支,它主要研究随着时间的变化,事物发生、发展的过程,寻找事物发展变化的规律并预测未来的走势。在日常生产和生活中,时间序列比比皆是,所以目前时间序列分析方法广泛应用于经济、金融、天文、气象、海洋、物理、化学、医学、质量控制等诸多领域,成为众多行业经常使用的统计方法。 本书是基于Python编写的入门级时间序列分析教材,主要内容包括时间序列分析简介、时间序列的预处理、ARMA模型的性质、平稳序列的拟合与预测、无季节效应的非平稳序列分析、有季节效应的非平稳序列分析、多元时间序列分析。
本书是《数据结构》一书配套的实验教材,用于辅助实验教学。全书共分三篇。*篇为基础实验,介绍数据结构与算法基础知识的实验,包括线性表、栈和队列、串、数组,以及广义表、树和二叉树、图、查找、排序等内容,一共有12个实验。第二篇为综合实验,是数据结构知识的应用与提高,包括链表的应用,栈和队列的应用,树结构的应用,图结构的应用以及文本文件检索等综合性实验内容,共10个实验。第三篇为课程设计,详细介绍了7个课程设计的课题,综合性较强,另外还给出了一部分实训项目,内容涉及数据结构课程的多个应用领域,以引导学生进行开发实践。
机器学习是计算机科学和人工智能中 重要的一个研究领域,近年来,机器学习不但在计算机科学的众多领域中大显身手,而且成为一些交叉学科的重要支撑技术。Drew Conway编著的《机器学习(实用案例解析)》比较全面系统地介绍了机器学习的方法和技术,不仅详细阐述了许多经典的学习方法,而且讨论了一些有生命力的新理论、新方法。 全书案例既有分类问题,也有回归问题;既包含监督学习,也涵盖无监督学习。《机器学习(实用案例解析)》讨论的案例涉及分类、回归、聚类、降维、 化问题等。这些案例包括:垃圾邮件识别、智能收件箱、预测网页访问量、文本回归、密码破译、构建股票市场指数、用投票记录对美国参议员聚类、给用户 r语言包、分析社交图谱、给问题找到 算法等。各章对原理的叙述力求概念清晰、表达准确,突出理论联系实际,富有
这是一本没有编程基础也能学习的企业数据分析书。本书以解决企业中常见的数据分析问题为主线,通过实例,采用“思路―方法―具体实现过程”的结构进行通俗易懂的讲解。本书共分为3篇。篇,带领读者了解数据分析并熟
本书基于MySQL介绍数据库的基本概念、基本原理和基本设计方法,以面向工作过程的教学方法为导向,合理安排各项目的内容。本书突出实用性,减少理论知识的介绍,并设计大量的项目实训和课外拓展内容,符合高职高专教育的特点。 本书包括三篇,由8个项目组成。 篇知识储备(项目1和项目2)讲述从理论层次设计数据库的方法;第二篇基础应用(项目3~项目5)讲述基于MySQL创建数据库的方法和数据库的基本应用;第三篇 应用(项目6~项目8)讲述数据库的 应用和维护MySQL数据库安全的方法。 本书可作为高职高专院校、成人教育类院校数据库原理及应用课程的教材,也可供参加自学考试的人员、数据库应用系统开发设计人员、工程技术人员及其他相关人员参阅。
本书通过大量的绘图和详细的说明,从技术层面以简单易懂的形式讲述大数据分析。这是一本从系统结构搭建到实际开发逐步推进的教科书。 书中的知识点包括大数据分析时所需的分布式处理、机器学习,以及分布式存储、分布式计算、开发时可能遇到的瓶颈,还包括大数据的收集、积累、活用以及元数据的使用与管理等。 本书适合大数据领域的广大爱好者、商务人士和工程技术人员用于了解、学习、掌握、运用大数据技术进行大数据分析,也适合作为该领域的职业院校和高校本科相关专业的教材及研究生辅助教材。