《开放科学云技术与实践》回顾了全球主要开放科学平台的建设进展,搭建了开放科学云联邦系统框架,针对开放科学全过程链条中的计算、存储、网络、数据、软件等关键资源,以及资源汇聚与开放交流、云联邦、智能运管等关键技术与服务诸方面进行了总结归纳。遴选出天文科学、高能物理、生命科学等四个典型案例进行了剖析。提出面向全球合作的开放科学云设想,为进一步推动全球开放科学云基础设施建设提供了丰富的技术参考和实践案例。
《数据挖掘导论(完整版)》涵盖五个主题:数据、分类、关联分析、聚类和异常检测。除异常检测外,每个主题都包含两章:前面一章讲述基本概念、代表性算法和评估技术,后面一章较深入地讨论高级概念和算法,目的是使读者在透彻地理解数据挖掘基础的同时,还能了解更多重要的高级主题。《大数据:互联网大规模数据挖掘与分布式处理(第2版)》 源自斯坦福大学 海量数据挖掘 (CS246: Mining Massive Datasets)课程,主要关注极大规模数据的挖掘。主要内容包括分布式文件系统、相似性搜索、搜索引擎技术、频繁项集挖掘、聚类算法、广告管理及推荐系统。两本书都提供了大量示例、图表和习题。
利用机器翻译技术实现不同语言之间的自由交流始终是 令人期待的计算机应用之一。本书全面回顾了近30年来机器翻译的技术发展历程,遵循机器翻译技术的发展脉络,对基于统计和基于端到端深度学习的机器翻译关键技术及原理进行了深入讲解,力求做到简洁明了、全面透彻、图文结合。此外,本书着重介绍了近年来机器翻译领域的科研热点及其结果,旨在帮助读者全面了解机器翻译的前沿研究进展和关键技术。本书可供计算机相关专业高年级本科生及研究生学习使用,也可作为自然语言处理,特别是机器翻译相关研究人员的案边手册。
本书介绍可以帮助读者处理真实数据分析挑战的概念和技能。它涵盖了概率论、统计推断、线性回归和机器学习等概念。它还帮助读者提升如下技能:R编程、数据清洗、数据可视化、预测算法构建、使用UNIX/Linux
本书是一本全面关注企业数据标准化方面的工具书,主要分为5 篇。 篇介绍了数据标准化是数据治理的基础,包括数据标准化与数据治理的关系,以及数据标准化主要内容、本书阅读导引。 第2 篇介绍了数据标准化框架体系,包括架构类数据标准、对象类数据标准、基础类数据标准。 第3 篇介绍了数据标准化实施流程与方法,包括建立数据标准化保障机制、现状分析及评估、技术平台和工具、数据标准化关键域实施。 第4 篇介绍了数据标准化评价,包括数据标准化评价方法、数据标准成熟度评价、数据标准化成熟度评价流程。 第5 篇介绍了数据标准化案例,包括油气行业、多元化集团、装备制造行业、核电行业、汽车行业、金融行业、政务行业、互联网行业等行业的数据治理案例,为读者提供了专业、丰富、可信的数据治理实施范例。 本书是工业大数据
本书以当前热点的数据挖掘应用贯穿全书,通过详解大数据挖掘技术在系统日志、工作票、可持续性研究、推荐系统、智能问答系统、社交媒体、生物信息学与健康医疗、隐私保护等方面的实际应用案例,阐述了如何更好地应用和学习数据挖掘技术。本书融入了数据挖掘前沿技术和典型应用,不仅适合热爱和关心数据挖掘技术的学术界和工业界人士阅读,还适合作为各大高校的数据挖掘和机器学习课堂的实践教材和参考书籍。本书有助于读者更好地理解数据挖掘技术背后的根源和本质。