本书系统讲授数据挖掘的原理、主要方法及其Python实现,共分三部分:第一部分包含第1~2章,介绍数据挖掘的基本概念、流程和数据预处理;第二部分包含第3~11章,介绍经典的分类算法(包括朴素贝叶斯分类器、决策树、k-近邻、支持向量机等)、经典的聚类分析、关联分析、人工神经网络和Web挖掘等方法;第三部包含第12~14章,共有3个综合案例,包括泰坦尼克号生存数据分析、心脏病预测分析和旅游评论倾向性分析。
机器学习是计算机科学和人工智能中 重要的一个研究领域,近年来,机器学习不但在计算机科学的众多领域中大显身手,而且成为一些交叉学科的重要支撑技术。Drew Conway编著的《机器学习(实用案例解析)》比较全面系统地介绍了机器学习的方法和技术,不仅详细阐述了许多经典的学习方法,而且讨论了一些有生命力的新理论、新方法。 全书案例既有分类问题,也有回归问题;既包含监督学习,也涵盖无监督学习。《机器学习(实用案例解析)》讨论的案例涉及分类、回归、聚类、降维、 化问题等。这些案例包括:垃圾邮件识别、智能收件箱、预测网页访问量、文本回归、密码破译、构建股票市场指数、用投票记录对美国参议员聚类、给用户 r语言包、分析社交图谱、给问题找到 算法等。各章对原理的叙述力求概念清晰、表达准确,突出理论联系实际,富有
这是一本没有编程基础也能学习的企业数据分析书。本书以解决企业中常见的数据分析问题为主线,通过实例,采用“思路―方法―具体实现过程”的结构进行通俗易懂的讲解。本书共分为3篇。篇,带领读者了解数据分析并熟
作为《谁说菜鸟不会数据分析》家族的新成员,本书依然通俗地讲解数据分析的实践。《谁说菜鸟不会数据分析(SPSS篇)》继续采用职场三人行的方式来构建内容,细致梳理了准专业数据分析的常见问题,并且挑选出企业
这是一本专门为智慧城市开发和管理人员打造的GeoMesa学习图书。本书的重点不仅包括宏观的行业环境,还包括对GeoMesa内部原理的剖析,力图帮助读者搭建GeoMesa以及时空数据高效管理的完整知识体系和技能树。 本书首先从GeoMesa的历史及上手教程入手。然后,为了加强读者对入门代码中内容的理解,本书对GeoTools的基本概念进行介绍。接着,为了进一步引导读者对时空数据管理建立认知,本书详细阐述GeoMesa核心的时空索引。除了理论方面的介绍,本书还介绍GeoMesa数据写入、数据查询、数据统计、数据分析、数据工作流以及数据存储方案的使用方法和原理,以及GeoMesa对分布式计算的扩展。,作者针对实际操作时遇到的典型问题,给出详细的解决方案。
本书作为《大数据导论》(ISBN 9787302500704)的配套实训,旨在帮助读者夯实基础知识,还原企业真实业务,提升实操能力。本书从大数据开发所需要的基础编程知识出发,首先阐述 Linux 开发环境中常用的命令。接着介绍数据清洗工具 Kettle 的基础操作以及常见的数据可视化效果,如饼图、柱状图、折线图、平行坐标图等。通过数据清洗、数据可视化、数据挖掘等热门大数据技术在环境、金融、电商等行业的具体应用,给读者提供真实的大数据体验情景。 本书提供了丰富的项目实训案例,结合实际情况进行真实的行业数据研究,从而培养实用型人才的专业项目能力。本书既可作为培养应用型人才的课程,也可作为相关开发人员的自学和参考手册。