本书循序渐进、深入讲解了R语言数据统计分析与应用的核心知识,并通过具体实例的实现过程演练了知识点的用法和流程。全书共16章,分别讲解了R语言基础、R语言数据统计语法基础、数据获取和处理、绘制可视化统计图、描述性统计分析、探索性数据分析、推论统计、回归分析、方差分析、非参数统计分析、主成分分析、聚类分析、生存分析、因子分析、基于机器学习的患者再入院预测分析系统和中概科技指数统计分析与投资系统。全书简洁而不失其技术深度,内容丰富全面,历史资料翔实齐全。同时,本书易于阅读,以极简的文字介绍了复杂的案例,同时涵盖了其他同类图书中很少涉及的历史参考资料,是学习R语言数据统计分析与应用的实用教程。
nbsp nbsp《Power BI 商业数据分析完全自学教程》是一本系统地讲解利用 Power BI 软件进行商业数据智能分析的自学宝典。《Power BI商业数据分析完全自学教程》以 完全精通 Power BI 为出发点,以 用好 Power BI 为目标来安排内容,全书共 5 篇,分为 14 章,循序渐进地介绍了 Power BI 的基本操作、数据导入、数据整理、数据建模、数据可视化分析、数据发布等相关技能。 第 1 篇为基础入门篇(第 1 章 ~ 第 3 章),主要针对初学者,从零开始,系统且全面地讲解了 Power BI 的入门知识点、基本操作及数据的输入和连接操作。 第 2 篇为数据处理篇(第 4 章 ~ 第 6 章),介绍了 Power BI 数据的整理操作、表格中行 / 列数据的管理,以及 Power BI 数据的高级处理、M 函数的使用等。 第 3 篇为数据分析篇(第 7 章 ~ 第 9 章),介绍了 Power BI 数据的建模操作及 DAX 语言的入门和进阶操作等。
本书按照需求规划、需求实现、需求可视化的流程进行编排,遵循项目开发的实际流程,全面介绍了数据仓库的搭建过程。在整个数据仓库的搭建过程中,本书介绍了主要组件的安装部署过程、需求实现的具体思路、部分问题的解决方案等,并在其中穿插了许多与大数据和数据仓库相关的理论知识,包括大数据概论、数据仓库概论、电商业务概述、数据仓库理论准备、数据仓库建模等。 本书从逻辑上可以分为三部分:一是大数据与数据仓库概论及项目需求描述,主要介绍了数据仓库的概念、应用场景和搭建需求;二是项目部署的环境准备,介绍了如何从零开始搭建一个完整的数据仓库环境;三是需求模块实现,针对不同需求分模块进行实现,是本书的重点部分。 本书适合具有一定的编程基础并对大数据感兴趣的读者阅读。通过阅读本书,读者可以快速了解数据
《Python数据分析与大数据处理从入门到精通》主要讲解数据分析与大数据处理所需的技术、基础设施、核心概念、实施流程。从编程语言准备、数据采集与清洗、数据分析与可视化,到大型数据的分布式存储与分布式计算,贯穿了整个大数据项目开发流程。本书轻理论、重实践,目的是让读者快速上手。1篇首先介绍了Python的基本语法、面向对象开发、模块化设计等,掌握Python的编程方式。然后介绍了多线程、多进程及其相互间的通信,让读者对分布式程序有个基本的认识。第2篇介绍了网络数据采集、数据清洗、数据存储等技术。第3篇介绍了Python常用的数据分析工具,扩展了更多的数据清洗、插值方法,为*终的数据可视化奠定基础。第4篇是大数据分析的重点。首先介绍了Hadoop的框架原理、调度原理,MapReduce原理与编程模型、环境搭建,接着介绍了Spark框架原
从统计学科与计算机科学的性质认知,大数据是指那些超过传统数据系统处理能力、超出经典统计思想研究范围、不借用网络无法用主流软件工具及技术进行单机分析的复杂数据的集合,对于这一数据集合,在一定的条件下和合理的时间内,我们可以通过现代计算机技术和创新的统计方法,有目的地进行设计、获取、管理、分析,揭示隐藏在其中的有价值的模式和知识。 《大数据:统计理论、方法与应用》共分五章,其内容包括大数据下的统计理论体系、大数据下的数据集整合分析、大数据下的高维变量选择方法、大数据下的统计方法并行计算和大数据下的统计方法应用——网络舆情分析。 本书内容新颖,取材国内外资料,同时认真总结了作者近年来的科研成果,重点反映统计学对大数据发展的影响,突出五大特点: (1)充分体现学科融合; (2)
《从零开始学Power BI商业数据分析(视频教学版)》从Power BI的基础知识讲起,然后逐步深入Power BI的进阶提升知识,最后配合项目实战案例,展示如何使用Power BI进行数据清洗、数据统计和数据可视化等相关操作,从而帮助零基础的数据分析人员快速上手。 《从零开始学Power BI商业数据分析(视频教学版)》共10章,分为3篇。第1篇 基础知识 ,主要介绍Power BI的下载和注册方法,以及相关组件的用法和数据导入方法,并详细介绍Power Query的基础知识。第2篇 进阶提升 ,主要介绍数据建模、度量值、常用的度量值应用案例、可视化看板的制作和Power BI在线版等相关知识。第3篇 项目案例实战 ,主要介绍如何用Power BI制作数据大屏、多页面交互式可视化看板和分析报告3个实战案例,展现数据清洗、数据统计和数据可视化的整个流程。 《从零开始学Power BI商业数据分析(
《数据分析师手记:数据分析72个核心问题精解》从底层认知、思维方法、工具技术、项目落地及展望出发,使用问答的形式对数据分析中的72个核心知识点进行讲解,构建了数据分析的知识框架,带领读者认识数据分析背后的奥妙。读者可以用本书作为学习地图,针对具体的方法、技术进行延伸学习。
本书以零基础讲解为宗旨,用实例引导的方法,深入浅出地介绍了Oracle的相关知识和实战技能。本书篇基础知识主要讲解Oracle的安装与配置、SQL的基础知识、不错SQL限定查询、Oracle的单行函数、多表查询、分组统计查询、子查询、Oracle数据的基本操作、Oracle的表创建与管理以及Oracle的数据完整性等;第2篇核心技术主要讲解Oracle数据库对象的使用、PL/SQL编程、游标、存储过程与函数、触发器和程序包、表空间管理、控制文件及日志文件的管理、Oracle的安全管理以及数据库备份与恢复等;第3篇不错应用主要介绍PowerDesigner设计工具及数据库设计、在ASP中访问Oracle、在Java中访问Oracle、在JSP中访问Oracle、在PHP中访问Oracle等;第4篇项目实战主要讲解基于B/S结构的求职网的设计与实现以及闲置品交易网站的设计与实现。本书提供了与图书内容全程同步的教学录像。此外,还赠
本书介绍数据存储架构与技术,涵盖存储盘与存储介质、存储阵列、存储协议、键值存储、文件系统、网络存储体系结构、分布式存储系统、存储可靠性、存储安全、数据保护等基础内容,对存储维护、存储解决方案、存储技术趋势与发展等主题进行了深入讨论,以新的研究成果作为案例,同时提供习题帮助读者加深对数据存储的理解与运用。 本书适合计算机及相关专业高年级本科生或研究生阅读、学习,同时也可供相关专业技术人员参考。
近年来,以Apache Spark为代表的大数据处理框架在学术界和工业界得到了广泛的使用。本书以Apache Spark框架为核心,总结了大数据处理框架的基础知识、核心理论、典型的Spark应用,以及相关的性能和可靠性问题。本书分9章,主要包含四部分内容。部分 大数据处理框架的基础知识(~2章):介绍大数据处理框架的基本概念、系统架构、编程模型、相关的研究工作,并以一个典型的Spark应用为例概述Spark应用的执行流程。第二部分 Spark大数据处理框架的核心理论(第3~4章):介绍Spark框架将应用程序转化为逻辑处理流程,进而转化为可并行执行的物理执行计划的一般过程及方法。第三部分 典型的Spark应用(第5章):介绍迭代型的Spark机器学习应用和图计算应用。第四部分 大数据处理框架性能和可靠性保障机制(第6~9章):介绍Spark框架的Shuffle机制、数据缓存机制、错
内容简介 br 这是一本将数据科学三要素——商业理解、量化模型、数据技术全面打通的实战性著作,是来自腾讯、滴滴、快手等一线互联网企业的数据科学家、数据分析师和算法工程师的经验总结,得到了SQLFlow创始人以及腾讯、网易、快手、贝壳找房、谷歌等企业的专家一致好评和 。 br 全书三个部分,内容相对独立,既能帮助初学者建立知识体系,又能帮助从业者解决商业中的实际问题,还能帮助有经验的专家快速掌握数据科学的Z新技术和发展动向。内容围绕非实验环境下的观测数据的分析、实验的设计和分析、自助式数据科学平台3大主题展开,涉及统计学、经济学、机器学习、实验科学等多个领域,包含大量常用的数据科学方法、简洁的代码实现和经典的实战案例。 br 部分(第 1~6 章) 观测数据的分析技术 br 讲解了非实验环境下不同观测数据分析场景所
本报告研究提出了 电-碳市场的总体方案、建设重点、演进路径和效益与价值等,共分为五部分。 部分:研判气候变化和能源转型形势,分析构建电-碳市场的必要性和重要意义,提出 电-碳市场理念。第二部分:提出 电-碳市场总体方案,介绍市场的功能目标、市场架构、参与主体、交易产品和关键机制,分析 电-碳市场与 能源互联网的联系。第三部分:从清洁能源开发、互联电网建设和市场建设维度,研究提出构建 、区域/次区域、 电-碳市场的建设重点。第四部分:研究 电-碳市场发展路径,提出到2025、2035、2050年的分阶段建设目标。第五部分:分析 电-碳市场在提升经济效益、推动能源清洁转型、激发能源产业发展活力、保障能源安全高效供给、应对气候变化与环境污染、促进区域包容性增长与 合作方面的多元化效益与价值。