本书从初学者易于理解的角度,以通俗易懂的语言、丰富的实例、简洁的图表、传统和现代数据特征的对比,将大数据这一计算机前沿科学如数家珍地娓娓道来。既介绍了大数据和相关的基础知识,又与具体应用有机结合起来,并借助可视化图表的画面感立体地为读者剖析了大数据的技术和原理,非常便于自学。本书内容包括大数据概论、大数据采集及预处理、大数据分析、大数据可视化、Hadoop概论、HDFS和Common概论、MapReduce概论、NoSQL技术介绍、Spark概论、云计算与大数据、大数据相关案例等内容。本书既可以作为想了解大数据技术和应用的初学者的教材,也适合作为培训中心、IT人员、企业策划和管理人员的参考书。
本书通过选购笔记本电脑的案例引入数据包络分析(dataenvelopmentanalysis,DEA)的基本概念和模型,并运用简单的EXCEL模型让读者更易理解和运用DEA。本书着重阐述如何将DEA作为一种运营分析工具,进行绩效评估,找出基准标杆。探讨的主题包括:平衡的基准,昀佳实践,相对效率的概念及绩效提升。特别地,本书探讨的数据分析方法能够帮助一个组织重新审视它对生产效率高低的已有观点是否合理,并为组织不断改进提供指导。本书是市面上唯一本不要求读者具备线性规划和线性代数知识,就可以熟练应用DEA方法的DEA方法指导用书。
本书主要介绍大数据可视化的基本概念和相应的技术应用。全书内容共10章,分别为大数据可视化概述、大数据可视化原理、大数据可视化方法、数据可视化工具、Excel数据可视化、Tableau数据可视化、ECharts与pyecharts数据可视化、Python数据可视化、大数据可视化行业分析以及大数据可视化综合实训。 本书将理论与实践操作相结合,通过大量的案例帮助读者快速了解和应用大数据分析的相关技术,并且对于书中重要的、核心的知识点加大练习的比例,以使读者达到熟练应用的目的。 本书可作为大数据、云计算、软件技术、信息管理、计算机网络等专业的教材,可也作为大数据爱好者的自学参考书。
大数据为何如此聪明?它是否会chao越人类理性的控制?本书选取人机关系这一切入点作为分析视角,综合以往哲学界做出的相关论述,阐释了新的概念与理论体系下大数据如何在人机交互中构建和涌现智能。 本书以大数据时代作为总的分析背景,进行了 人机关系的内涵分析 人机关系与心物关系问题的关联 大数据的构建与其意向性的负载 大数据的可建构性研究 人机关系视域下的大数据的伦理问题 等方面的论述,在跟随时代热点的同时也对 心物关系 和 他心知 等经典的哲学问题做出了视角较为新颖的回应。本书知识性、系统性较强,可作为科技哲学领域研究的专家学者进一步从事人工智能哲学和技术哲学等领域研究的参考用书。
《数据挖掘技术》是基于数据挖掘经典算法及数据挖掘领域*研究技术进行数据分析的教材。全书内容包括数据挖掘概述、分类算法、聚类算法、关联规则算法及相应典型算法的算法描述及分析等。对当前数据挖掘的新技术——流数据挖掘技术、高维聚类算法、分布式数据挖掘、物联网数据挖掘进行了详细的介绍。该部分在讲述基本概念及典型算法的基础上配有新研究的算法模型及分析,并有实验数据分析及结果显示。后对其他数据挖掘新技术,包括业务活动监控挖掘技术、云计算平台架构和数据挖掘方法及思维流程数据挖掘技术进行了描述。 本书可以作为高等院校信息管理、数理统计等专业有关数据挖掘教学的本科生或者研究生的专业课教材,也可以作为各类相关培训班的教材,还可以作为从事数据分析、智能产品软件开发人员的参考书及数据挖掘爱好
本书的主要内容包括金融工程导论、金融工程定价方法及其R语言函数计算、远期合约及其R语言函数计算、期货合约及其R语言函数计算、期货套期保值及其R语言函数计算、互换合约及其R语言函数计算、期权合约及其策略、Black Scholes期权定价方法及其R语言函数计算、蒙特卡罗模拟法期权定价及其R语言函数计算、二叉树法期权定价及其R语言函数计算、有限差分法期权定价及其R语言函数计算、利率衍生证券及其R语言函数计算以及奇异期权及其R语言函数计算,本书的后提供了关于R语言的两个附录。本书内容新颖、全面,实用性强,融理论、方法、应用于一体,是一本供金融工程、金融数学、计算金融、量化金融、投资学、金融学、保险学、金融专业硕士、经济学、统计学、数量经济学、管理科学与工程、应用数学、计算数学、概率论与数理统计等专业的本科高年级
本书基于作者近几年来的研究开发成果及应用实践,对物联网大数据技术体系进行了系统归纳,阐述了物联网环境下感知数据的特性、数据模型、事务模型以及调度处理方法等核心概念及关键技术,并对物联网大数据存储、管理、计算与分析的基本概念和关键技术进行了剖析。本书还介绍了自行研发的面向物联网的ChinDB实时感知数据库系统以及针对云计算环境下物联网大数据管理与应用的DeCloud云平台,介绍了它们在智能交通、智能电厂、教育、安全监控等多个行业的应用。书中所有实例,均来自作者所在团队的实际应用,大部分在物联网项目中得到了实践应用。本书对物联网应用的开发以及两化融合、工业4.0环境下的大数据处理分析具有重要参考价值。
为数据挖掘入门级教材,共分8章,主要内容分为三个专题:技术、数据和评估。技术专题包括决策树技术、K-means算法、关联分析技术、神经网络技术、回归分析技术、贝叶斯分析、凝聚聚类、概念分层聚类、混合模型聚类技术的EM算法、时间序列分析和基于Web的数据挖掘等常用的机器学习方法和统计技术。数据专题包括数据库中的知识发现处理模型和数据仓库及OLAP技术。评估专题包括利用检验集分类正确率和混淆矩阵,并结合检验集置信区间评估有指导学习模型,使用无指导聚类技术评估有指导模型,利用Lift和假设检验比较两个有指导学习模型,使用MS Excel 2010和经典的假设检验模型评估属性,使用簇质量度量方法和有指导学习技术评估无指导聚类模型。本书秉承教材风格,强调广度讲解。注重成熟模型和开源工具的使用,以提高学习者的应用能力为目标;
本书不讲具体语法,只是以案例的形式介绍各种查询语句的用法。靠前~4章是基础部分,讲述了常用的各种基础语句,以及常见的错误和正确语句的写法,应熟练掌握这部分内容,因为在日常查询和优化改写中都要用到;第5~12章是提高部分,讲解了正则表达式、分析函数、树形查询及汇总函数的用法,这部分内容常用于一些复杂需求的实现及优化改写;很后两章介绍日常的优化改写案例,这部分内容是前面所学知识的扩展应用。如果您是开发人员,经常与Oracle打交道,那么本书可以帮助您处理复杂的需求,写出高性能的语句。如果您是运维人员,则本书可以帮助您更快地完成慢语句的改写优化。
本书分为部分,分别为大数据基础理论分析、基于海量语意规则的大数据流处理技术及大数据应用。 部分介绍大数据领域的主要基础理论,包括大数据基本概念、可编程数据中心、云文件系统、云数据库系统、大数据并行编程与分析模型、大数据智能计算算法、基于大数据的数据仓库技术、大数据安全与隐私保护,以及基于大数据的语意软件工程方法等。 第二部分介绍基于海量语意规则的大数据流处理技术,包括基于规则的大数据流处理介绍、语意规则描述模型、海量语意规则网及优化、海量语意规则处理算法及海量语意规则并行处理等。 第三部分主要介绍大数据的一些典型应用,包括:文化大数据、医疗健康大数据、互联网金融大数据、教育大数据、电子商务大数据、互联网大数据、能源大数据、交通大数据、宏观经济大数据、进出口食品安全监管大数据、基
本书按照简明、易读、突出实用的原则编写,书中所选案例均来自企业PDM项目实际,并在Siemens PLM Software Teamcenter 10平台上加以实现,同时由编者反复论证,全书图文并茂,并配以详尽准确的讲解步骤,使读者能够快速理解并掌握本书案例中所阐述的PDM实施方法和技巧。另外,本书每章都附有相应的练习题,供读者进行练习。读者通过学习本书,可以由浅入深、循序渐进地理解PDM的基本知识和原理,掌握企业PDM实施技能,逐步具有借助PDM平台提高企业研发核心能力,提升产品质量的工程素养。
本专著主要基于软件领域数据的特性和预测模型的不同应用场景,对软件缺陷预测前言的若干关键技术进行了研究和总结。主要内容包括迁移学 习环境下的缺陷预测技术,半监督环境下的缺陷预测技术,主动学习环境下的缺陷预测技术,基于核理论的缺陷预测技术,所应用的理论、 算法及应用成果的介绍和展示。
由宋媚所*的《大数据征信背景下的信息质量度量与提升研究》主要关注大数据背景下的信息质量度量方法,并有针对性地提出了信息质量管理提升策略。《大数据征信背景下的信息质量度量与提升研究》具体包括:大数据征信背景下的信息质量评价与管控;征信信息质量度量模型的构建;征信信息质量度量模型应用;征信系统的信息质量管理与价值提升策略分析。
本书是国内部关于医学数据挖掘的教材。包括基础篇、核心篇和应用篇三个部分。基础篇介绍数据挖掘的基本概念和理论,核心篇介绍数据挖掘的主要算法和工具,应用篇则分别介绍数据挖掘在医学临床、分子生物学、预防医学、医院管理、文本和web挖掘中的具体应用。 本书首先强调数据挖掘的基本概念和基本方法,重点介绍该领域的基本概念、基本过程和方法;各种算法以介绍其适用条件和原理为主,尽量少涉及具体算法的数学公式。其次,本书以应用为主,介绍数据挖掘方法在医学研究和服务中的应用实例,为学生今后进一步从事这一方面的深入研究提供基础。后,本书在内容组织上力求全面系统,突出重点。由浅入深、突出交叉学科的特色的同时,注重所介绍知识的层次,适合不同水平读者的学习需要。
大数据分布式计算课程是大数据方向应用统计专业硕士学生的专业必修课,通过本课程的学习使学生能够掌握目前大数据挖掘领域常用的并行计算方法,加深学生对统计并行计算的理解,培养学生使用在现代并行架构下利用统计方法深入挖掘大数据中的数据结构并能解决一些实际问题的能力。
随着Python应用领域的拓展,越来越多的人将Python用于处理大型数值数据集,使用标准格式来进行数据的存储和通信也显得越来越重要,而HDF5也正迅速成为人们存储科学数据的选择。本书向任何有Python数据分析基本背景的人介绍如何在Python下使用HDF5。 本书将着重于HDF5的本地功能集,而不是Python的高层抽象。熟悉Python和NumPy的读者,更容易阅读和掌握本书的内容。本书适合有一定基础的Python开发者,尤其适合要使用Python开发数据存储和处理等相关应用的读者阅读参考。
本书是一本介绍数据仓库和数据挖掘的图书。全书力求深入浅出、通过浅显易懂的语言及实例介绍数据仓库与数据挖掘的基本概念及相关理论。从数据仓库的定义、结构、设计、数据访问方法及应用等方面对数据仓库做了较详细的介绍。从数据挖掘的定义、数据预处理方法、数据挖掘发现知识的类型及数据挖掘常用算法等几方面对数据挖掘的基本知识和算法等理论做了介绍。本书特别介绍了SQL Server2000数据挖掘工具应用和SPSS数据挖掘工具应用。后,给出了一个数据挖掘的应用实例。本书总的指导思想是在掌握基本知识和基本理论的基础上,更强调实际应用能力的培养。 本书可作为普通高等院校计算机科学与技术专业、软件工程专业或信息类等其他相关专业的教材,也可作为有关数据仓库与数据挖掘方面的培训教材,以及所有想学习数据仓库与数据挖掘知识的人
数据挖掘是近年来计算机科学中活跃的研究分支之一。本书分三部分介绍数据挖掘中的三个热点:空间数据挖掘、半监督学习与流形学习,并分别介绍了这三个研究热点的研究背景、研究现状、存在问题、*算法与应用等。本书在论述这三个研究热点的研究现状并分析了存在的问题后,面向实际需要,提出*的模型、算法与技术。这些模型与算法以作者研究成果为基础,具有一定的创新性与实际应用价值。这些成果可帮助广大研究工作者与工程技术人员拓展思路,并为数据挖掘的理论应用提供借鉴。 本书可供数据挖掘、机器学习及相关专业的研究人员、教师、研究生和工程人员参考。