内容简介这是一部能指引零基础读者顺利完成数据资产入表的实操性著作。它不仅为读者提供了数据资产入表所需的全部知识,还给出了实际操作层面的方法指引;既是数据资产入表的初学者指南,也是企业实施数据资产入表操作的工作手册。本书由数据资产管理领域的标杆企业亿信华辰倾情奉献,同时融合了行业的先进实践经验,开创性提出 数据资产三次入表理论 (数据原始资源入表、数据产品入表、数据金融资产入表),得到了来自学术界和企业界的12位数据资产管理专家的高度评价和强烈推荐。本书分为四部分,不仅从战略、方法、工具、实操、案例等角度为读者提供了全面的数据资产入表知识体系,还前瞻性地探讨了数据资产入表后的价值挖掘、资产评估和金融创新。第一部分 数据资产入表全景概览(第1和第2章)深入分析数据资产入表的宏观背景、核
数据、模型与决策是应用数学建模和计算机技术帮助决策者解决问题。作为国外一本优秀的数据、模型与决策的教材,本书具有以下特色: 1.对枯燥、复杂和技术化的数学问题用简明易懂的语言予以解释,兼顾严谨的数理逻辑。 2.突出建模分析框架和基础逻辑的讲授和训练,在某种程度上实现了艺术与科学的有机融合。 3.课后习题丰富,并配有网络题库,供自学者加强训练,及时检查对理论模型及其求解方法的掌握程度。 第12版把修订重点放在企业和组织的*技术发展上,增加了商业分析(第1章)、项目风险(第8章)以及数据挖掘(第14章)等内容。
本书以LabVIEW 2017为基础,讲述LabVIEW图形化编程语言的原理,以及如何利用LabVIEW完成虚拟仪器设计。全书共15章,分为两篇,分别是基础知识篇(第1~13章)和实际应用篇(第14、15章)。第1章,综述虚拟仪器技术的构建思想和方法论。第2~7章,讲述LabVIEW图形化编程语言的基本原理以及编程方法,内容包括LabVIEW入门、基本数据类型、程序结构、复合数据类型、文件I/O、图形显示及其他技巧。第8~12章,阐述如何利用LabVIEW去控制仪器硬件以实现对被测信号的数据采集,内容包括选择专用的数据采集卡进行数据采集; 利用计算机自带的声卡实现数据采集; 利用摄像头完成图像采集; 仪器控制和控制单片机。第13章,讲述用LabVIEW实现仪器应用的若干算法和信号分析处理的相关知识。第14、15章,介绍利用LabVIEW完成有实际应用背景的两个虚拟仪器项目,分别是用LabVIEW构建函
数字经济已成为各国经济增长的新动能,并上升为国家发展战略,各国政府和人民对数据跨境流动安全问题的关注与日俱增。本书系统介绍了全球数据跨境规则的产生背景及其发展演变的脉络,重点分析了全球主要国家和地区数据跨境治理规则的内容和相互之间的异同,特别介绍了欧盟、美国话语权下的数据跨境流动规则及规则间的弥合,也介绍了其他国际性文件及十余个重点国家和地区的立法现状,同时展望了全球数据跨境规则的未来走向,在此基础上对我国的数据跨境流动治理规则现状进行梳理,并对其实施与完善提出了相关建议。本书语言平实易读,主要以法律法规、执法部门的解释性指南、判决书等一手资料作为参考,介绍分析了国内外立法现状和法律实践。
面对小数据和大数据,数据分析师应该如何收集数据信息?传统的业务框架如何与统计学相关联?测量学扮演着什么角色?建模过程有哪些预分析技术和修正技术?建模工作完成后,如何解析?如何归因?如何预测?等等,这些数据分析能力构成了本书的分析框架。本书分为8章,小数据与大数据分析模式的动态切换贯穿全书,展示了数据分析案例的模块化分析思路。第1~3章为数据预分析部分,强调业务问题与统计问题的衔接;第4~6章为统计建模阶段,其中附有对行业案例和业务敏感度的训练、对统计和业务整合的审美建议,进而构造出一套具有灵活调校的数据分析模式。第7~8章解决的问题是,如何将晦涩难懂的统计解释转换成业务解释。由衷地希望本书能够成为数据运营人员与初中级数据分析师分析数据的行动指南。
洞见产业新生态,解码数字新经济 行业场景真实展示 实际案例深度梳理,感受数字转型路径风格 谭建荣院士、郭华东院士、邬贺铨院士、张宏科院士 共同推荐 《产业数字化 释义、场景及应用案例》以《 十四五 数字经济发展规划》中产业数字化部分的核心内容为纲领,从入选工业和信息化部的大数据产业发展示范项目中,选取了具有产业代表性的来自生产一线的数字化转型实践案例,连同数字化建设和转型的共性基础内容,组织了42 个案例,从实践背景、方法手段、主要应用的技术、实践过程中遇到的典型问题、实施流程、典型应用场景等方面,分享了多个行业、多家单位的实践经验,以期帮助读者对产业数字化转型产生更为具体的了解和体会、获得间接经验,为读者提升数字认知和工作能力做一定的基础铺垫。 本书适合具有产业数字化转型需求的相关企业的管理者、
随着中台概念被广泛讨论,其中数据中台又被赋予担任企业智能化任务的重任。当前,不仅是大企业,很多企业都在开始打造或者引入中台,用来解决企业面临的系统重复建设与数据孤岛的问题,在这个过程中,中台产品经理需要做什么事,解决什么问题,又会遇到怎样的困难与挑战? 本书第1~2章讲解了中台起源与数据中台产品需要什么样的能力;第3~6章主要讲解中台中的数据中台的建设与规划、数据分析的方法与策略、数据体系建设方法与应用和企业数据的价值等;第7~9章主要讲解数据平台的需求分析与数据知识、系统平台的建设实战和用户画像体系的建设等内容。
内 容 简 介 本书针对未来想要从事数据分析工作的在校学生、想要转行做数据分析的在职人员,以及想要在数据分析领域提高自己或跳槽的从业人员,深入浅出地讲解了面试和未来实际工作中所需的知识与技能,让读者对数据分析师这个岗位有更为全面和深刻的了解。 全书主要分为面试前的准备、面试中的技巧、面试中所需的知识储备、编程技能、实战技能,以及进一步学习提高的方法几部分,内容涵盖数据分析师面试的全流程,全方位提高读者在未来面试中的竞争力。
Python 是一种面向对象的脚本语言,其代码简洁优美,类库丰富,开发效率也很高,得到越来越多开发者的喜爱,广泛应用于Web 开发、网络编程、爬虫开发、自动化运维、云计算、人工智能、科学计算等领域。预测技术在当今智能分析及其应用领域中发挥着重要作用,也是大数据时代的核心价值所在。随着AI 技术的进一步深化,预测技术将更好地支撑复杂场景下的预测需求,其商业价值不言而喻。基于Python 来做预测,不仅能够在业务上快速落地,还让代码维护更加方便。对预测原理的深度剖析和算法的细致解读,是本书的一大亮点。本书共分为3 篇。第1 篇介绍预测基础,主要包括预测概念理解、预测方法论、分析方法、特征技术、模型优化及评价,读者通过这部分内容的学习,可以掌握预测的基本步骤和方法思路。第2 篇介绍预测算法,该部分包含多元回归分析、
本书主要作为教育领域从事教育大数据研究工作者的参考用书。本书从教育大数据的重要意义、国内外教育大数据的研究现状以及政策支持出发,对教育大数据的相关概念和内涵做阐述说明,介绍了教育大数据的技术、技术标准、治理与开放、风险管理与法律政策,重点阐述了教育大数据在教育领域的典型应用,包括教育大数据在课堂教育、校园管理、在线教育、开放远程教育、教育培训行业以及学生综合素质评价等方面的应用,*后提出教育大数据的发展趋势和机遇挑战。
《谁说菜鸟不会数据分析(Python篇)》从解决工作实际问题出发,提炼总结工作中Python 常用的数据处理、数据分析实战方法与技巧。本书力求通俗易懂地介绍相关知识,在不影响学习理解的前提下,尽可能地避免使用晦涩难懂的Python 编程、统计术语或模型公式。 《谁说菜鸟不会数据分析(Python篇)》定位是带领Python 数据分析初学者入门,并能解决学习、工作中大部分的问题或需求。入门后如还需要进一步进阶学习,可自行扩展阅读相关书籍或资料,学习是永无止境的,正所谓 师傅领进门,修行在个人 。
Origin是国际科技出版界公认的标准作图软件,它功能强大、操作简单,被科研人员、工程技术人员、高校师生等广泛使用。Origin软件不仅具有强大的数据可视化功能,还具有统计分析、信号处理、函数拟合、峰值分析等功能,且支持多种格式的数据导入和导出。 本书基于Origin 2021和Origin 2022版本进行案例讲解,旨在帮助读者快速入门,并掌握Origin软件的使用技巧。本书由浅入深地讲解了Origin软件的功能和相关案例,涉及基础2D图、等高线图、3D图以及专业图的绘制,也涵盖了数学运算、拟合分析、信号处理、多峰分析等主题。 本书适用于Origin软件的初学者和希望提高科技绘图及数据分析处理能力的读者,尤其适用于大中专院校的师生以及广大科研工作者。
从统计学科与计算机科学的性质认知,大数据是指那些超过传统数据系统处理能力、超出经典统计思想研究范围、不借用网络无法用主流软件工具及技术进行单机分析的复杂数据的集合,对于这一数据集合,在一定的条件下和合理的时间内,我们可以通过现代计算机技术和创新的统计方法,有目的地进行设计、获取、管理、分析,揭示隐藏在其中的有价值的模式和知识。 《大数据:统计理论、方法与应用》共分五章,其内容包括大数据下的统计理论体系、大数据下的数据集整合分析、大数据下的高维变量选择方法、大数据下的统计方法并行计算和大数据下的统计方法应用——网络舆情分析。 本书内容新颖,取材国内外资料,同时认真总结了作者近年来的科研成果,重点反映统计学对大数据发展的影响,突出五大特点: (1)充分体现学科融合; (2)
人文社会科学和自然科学研究过程中积累了大量的研究数据,这些数据如何管理、共享、出版和引证?如何再次利用他人的数据?过程中牵涉到哪些知识产权?本书的几位作者不仅熟悉全球尤其欧美的研究数据管理的实践应用,而且在英国数据档案馆拥有多年数据相关专业工作的管理与实践经验,他们在本书中将多年积累的**数据管理实践建议、指导和培训倾囊呈现。本书前三章对研究数据管理和共享进行总括介绍,包括管理和共享的重要性、研究数据生命周期以及如何制订研究数据管理计划。第四章至第六章介绍了研究数据管理的具体方法,包括数据文档编制、数据格式与组织以及数据存储与传输。第七章至第十一章讨论了数据管理与共享所涉及的问题,包括法律和伦理、知识产权、合作研究、利用他人数据以及出版和引证。
当数据存储在多个数据库中,如何查询数据?特别是当这些数据库是由不同的人分别设计。这是个全面介绍数据集成的书,由业界三个受人尊敬的专家撰写。这本书讲解数据集成技术的理论知识,使用大量实例来解释基本概念。数据集成是解决跨多个数据源(如数据库,网页)的问题。目前在多种环境中都涉及数据集成问题,包括企业信息集成,在网络上的查询处理,政府机构之间的协调和科学家之间的合作。在某些情况下,数据集成是某个领域取得进展的关键。本书提供了数据集成的概念和工具,可用于数据集成的具体实现。本书作者是威斯康星大学麦迪逊分校计算机科学副教授,同时在微软AdCenter实验室与雅虎研究实验室担任咨询顾问。
这是一本让人脑洞大开的内容玩法书,给新一代叙事者提供了十八般武器。清晰的构架、简洁的语言、坦率的态度,整本书无不流露着新一代互联网原住民颠覆传统的创新基因。运营无招,数据有度。握好数据的尺度,把数据做出角度、深度、温度、态度,这是整本书的核心。围绕 新消费、玩互动、融呈现、变模式 四个维度,本书从场景化叙事聊到用户激励和内容产品经理,分享了内容、传播、团队该如何迎接变革的心路历程。产品的玩法本身会经历兴衰,但只要人的创新精神在,就可以在新的场景下也能够持续玩好内容。作者的探索与思考,无疑可以给内容运营从业者带来多元的启发。推荐准备从事内容传播和广告策划工作的在校生、即将从事互联网产品运营的人、移动互联网内容创新研究者、企业市场和品牌传播从业者参考阅读。
本书的主要内容包括网络数据的定义及相关指标、大规模网络中的链路预测、网络聚类分析、网络数据中的空间自回归模型、大规模网络数据中的模型估计方法、网络数据中的空间自回归模型的拓展及应用、网络中的空间自回归模型的其他研究方向等。本书关注大规模网络数据分析中的模型方法。除模型方法本身的理论拓展之外,在估计方法等方面会涉及大规模数据中的快速计算方法。由于网络分析本身的范围非常广泛,故本书涉及的内容仅局限于作者及团队研究工作中使用到的一部分。在本书的后,为了启发读者思路,对于部分已有网络研究进行了梳理。
Alluxio 这一以内存为中心的分布式虚拟文件系统,*初诞生于加州大学伯克利分校的 AMPLab,其开源社区在目前大数据生态系统中发展很快。本书以广泛使用的 Alluxio 1.8.1 版本为基础进行编写,是一本全面介绍 Alluxio 相关技术原理与实践案例的书籍。本书主要内容包括 Alluxio 系统快速入门、Alluxio 系统架构及读写工作机制、Alluxio 与底层存储系统的集成、Alluxio 与上层计算框架的集成、Alluxio 基本功能和高级功能的介绍与使用。此外,本书还详细介绍了 Alluxio 的应用案例与生产实践,并详细解读了 Alluxio 的核心框架和技术应用,旨在为大数据从业人员和大数据存储技术爱好者提供一个深入学习的平台,也可用作开源社区开发者指南。
在传统的数据处理流程中,总是先收集数据,然后将数据放到DB中。当人们需要的时候通过DB对数据做query,得到答案或进行相关的处理。这样看起来虽然非常合理,但是结果却非常的紧凑,尤其是在一些实时搜索应用环境中的某些具体问题,类似于MapReduce方式的离线处理并不能很好地解决问题。这就引出了一种新的数据计算结构---流计算方式。它可以很好地对大规模流动数据在不断变化的运动过程中实时地进行分析,捕捉到可能有用的信息,并把结果发送到下一计算节点。本书讲解流计算原理。
本书对经典物理学各个领域的齐次和非齐次波动方程的解的数学结构进行了深刻的揭示,理论成果对工程技术若干领域有用。本书对若干领域用数学特别是场论的方法进行一些探索,初步形成一家之说。本书采用现象学的基本观点和方法,道说追求真理的乐趣、途径和过程;展示作者方法的直观、必然和优雅。本书可供电磁理论、应用数学、线性声学、固体力学、地球物理、应用物理、微波遥感、材料科学、光电子学等专业的科技人员、研究生、大学生阅读和参考,也可作为相应专业研究生有关课程或讨论班的教材。本书是科学方面的启蒙读物,很多地方的论述都像晶体一样透明。希望能对提高读者在科学上的创造力有所帮助。
本书首先基于结构化国际科技资源信息数据库及非结构化国际科技资源信息,研究国际科技资源信息的数据抽取技术、学科与技术分类及数据库构建方法;其次,基于文献计量、专利计量、文本挖掘、研究价值图谱、技术路线图方法,研究构建国际科技资源监测分析方法和模型;再次,基于聚类分析、社会网络分析、地理信息系统等方法,研究国际科技资源信息监测分析的可视化方法和模型;后,介绍了国际科技合作资源监测系统和国际科技资源监测地理信息系统的开发及应用。
计算广告是一项新兴的研究课题,它涉及大规模搜索和文本分析、信息获取、统计模型、机器学习、分类、优化以及微观经济学等诸多领域的知识。本书从实践出发,系统地介绍计算广告的产品、问题、系统和算法,并且从工业界的视角对这一领域进行具体技术的深入剖析。 本书立足于广告市场的根本问题,从计算广告各个阶段所遇到的市场挑战出发,以广告系统业务形态的需求和变化为主线,依次介绍合约广告系统、竞价广告系统、程序化交易市场等重要课题,并对计算广告涉及的关键技术和算法做深入的探讨,这一版中更是加入了深度学习的基础方法论及其在计算广告中的应用。
数据分析、数据挖掘的本质是探寻数据背后的逻辑,挖掘人们的欲望、需求、态度等。本书不仅仅教会读者如何掌握数据挖掘相关技能,更教会读者如何从数据挖掘结果中分析出更深层次的逻辑。 《探寻数据背后的逻辑:R语言数据挖掘之道》主要介绍使用R语言进行数据挖掘的过程。具体内容包括R软件的安装及R语言基础知识、数据探索、数据可视化、回归预测分析、时间序列分析、算法选择流程及十大算法介绍、数据抓取、社交网络关系分析、情感分析、话题模型、推荐系统,以及数据挖掘在生物信息学中的应用。另外,本书还介绍了R脚本优化相关内容,使读者的数据挖掘技能更上一层楼。 《探寻数据背后的逻辑:R语言数据挖掘之道》适合从事数据挖掘、数据分析、市场研究的工作者及学生群体,以及对数据挖掘和数据分析感兴趣的初级读者。
本书将介绍电子通信系统、数据通信和网络的基本概念。涉及的主题包括无线和有线远程通信系统、基本的数据通信网络和系统、局域网、互联网和Internet,其中包括TCP/IP协议簇。本书将描述网络本身如何工作;本书将不介绍利用网络的软件应用程序是如何工作的。 如果读者以前学习过基本的电子学知识,包括基本的数字概念和二进制数字系统,那么他们就能很容易地理解所介绍的主题。每一章都包含大量示例,它们强调所介绍的重要的概念。每章章末包括一些问题,本书后有选择地提供了一些问题的答案。读者不必按照本书介绍每章和每章中主题的顺序进行学习。