全书共13章,分为2篇。第1篇基础知识,介绍了人工智能发展里程、计算机视觉概要、深度学习和计算机视觉中的基础数学知识、神经网络及其相关的机器学习基础、卷积神经网络及其一些常见结构,后对前沿的趋势进行了简单探讨。第2篇实例精讲,介绍了Python基础、OpneCV基础、简单的分类神经网络、图像识别、利用Caffe做回归、迁移学习和模型微调、目标检测、度量学习和图像风格迁移等常见的计算机视觉应用场景。从第5章开始包含了很多有趣和实用的代码示例。从第7章开始的所有实例都基于当前流行的深度学习框架中的Caffe和MXNet。
《强化学习精要:核心算法与TensorFlow实现》用通俗幽默的语言深入浅出地介绍了强化学习的基本算法与代码实现,为读者构建了一个完整的强化学习知识体系,同时介绍了这些算法的具体实现方式。从基本的马尔可夫决策过程,到各种复杂的强化学习算法,读者都可以从本书中学习到。本书除了介绍这些算法的原理,还深入分析了算法之间的内在联系,可以帮助读者举一反三,掌握算法精髓。书中介绍的代码可以帮助读者快速将算法应用到实践中。