《C Primer Plus(第6版)中文版》详细讲解了C语言的基本概念和编程技巧。 《C Primer Plus(第6版)中文版》共17章。第1章、第2章介绍了C语言编程的预备知识。第3章~第15章详细讲解了C语言的相关知识,包括数据类型、格式化输入/输出、运算符、表达式、语句、循环、字符输入和输出、函数、数组和指针、字符和字符串函数、内存管理、文件输入和输出、结构、位操作等。第16章、第17章介绍C预处理器、C库和高级数据表示。本书以丰富多样的程序为例,讲解C语言的知识要点和注意事项。每章末尾设计了大量复习题和编程练习,帮助读者巩固所学知识和提高实际编程能力。附录给出了各章复习题的参考答案和丰富的参考资料。 《C Primer Plus(第6版)中文版》可作为C语言的教材,适用于需要系统学习C语言的初学者,也适用于想要巩固C语言知识或希望进一步提高编程技
本书是备受广大读者推崇的数据结构与算法入门教程,已在GitHub获得超60k的 Star,并多次登顶GitHub Trending。书中系统介绍了数据结构与算法基础、复杂度分析、数组与链表、栈与队列、哈希表、树、堆、图、搜索、排序、分治、回溯、动态规划和贪心算法等核心知识,通过清晰易懂的解释和丰富的代码示例,以及生动形象的全彩插图和在线动画图解,揭示算法工作原理和数据结构底层实现,教授读者如何选择和设计算法来解决不同类型的问题,切实提升编程技能,构建完整的数据结构与算法知识体系。
《计算机视觉:算法与应用》探索了用于分析和解释图像的各种常用技术,描述了具有一定挑战性的视觉应用方面的成功实例,兼顾专业的医学成像和图像编辑与交织之类有趣的大众应用,以便学生能够将其应用于自己的照片和视频,从中获得成就感和乐趣。《计算机视觉:算法与应用》从科学的角度介绍基本的视觉问题,将成像过程的物理模型公式化,然后在此基础上生成对场景的逼真描述。作者还运用统计模型来分析和运用严格的工程方法来解决这些问题。 《计算机视觉:算法与应用》作为本科生和研究生 计算机视觉 课程的理想教材,适合计算机和电子工程专业学生使用,重点介绍现实中行之有效的基本技术,通过大量应用和练习来鼓励学生大胆创新。此外,《计算机视觉:算法与应用》的精心设计和编排,使其可以作为计算机视觉领域中一本独
本书以MATLABR2020a软件为基础,详细介绍各种智能算法的原理及MATLAB在智能算法中的应用,是一本MATLAB智能算法设计的综合性参考书。全书以智能算法原理及MATLAB应用为主线,结合各种应用案例,详细讲解智能算法在MATLAB中的实现方法。 全书共分为3部分:第一部分为基础知识;第二部分介绍经典的智能算法及其在MATLAB中的实现方法,包括遗传算法、免疫算法、蚁群算法、粒子群算法、小波分析、神经网络算法和模糊逻辑控制等内容;第三部分详细介绍智能算法在工程中的应用,包括模糊神经网络在工程中的应用、遗传算法在图像处理中的应用、神经网络在参数估计中的应用、基于智能算法的PID控制器设计等内容。 本书以工程应用为目标,内容讲解深入浅出、循序渐进,既可作为高等院校理工科相关专业研究生、本科生的教材,也可作为广大科研工程技术人员的参
本书以海量图解的形式,详细讲解常用的数据结构与算法,又融入大量的竞赛实例和解题技巧。通过对本书的学习,读者可掌握12种初级数据结构、15种常用STL函数、10种二叉树和图的应用,以及8种搜索技术,并领悟不同的数据结构和算法的精髓,熟练应用各种算法解决实际问题。 本书总计9章。第1章讲解C 语言基础,包括语法、函数、递归和数组;第2章讲解算法入门知识,包括算法复杂度计算、贪心算法、分治算法和STL应用;第3章讲解线性表的应用,包括顺序表、单链表、双向链表、循环链表和静态链表;第4章讲解栈和队列的应用,包括顺序栈、链栈、顺序队列和链队列;第5章讲解树的应用,包括树的存储、二叉树遍历与还原、哈夫曼编码;第6章讲解图论基础,包括图的存储、图的遍历和图的连通性;第7章讲解图的应用,包括短路径、小生成树、拓扑排序
本书基于MATLAB 2020a软件,根据常用优化算法进行编写,包含多种优化算法的MATLAB实现方法,可以帮助读者掌握MATLAB在优化算法中的应用。 全书分为4部分,包括MATLAB基础知识、常规优化算法、智能优化算法和拓展应用。第一部分从初识MATLAB开始详细介绍MATLAB基础、程序设计、图形绘制等内容;第二部分介绍线性规划、非线性规划、无约束一维极值、无约束多维极值、约束优化方法、二次规划、多目标优化方法的MATLAB实现;第三部分介绍遗传算法、免疫算法、粒子群优化算法、小波变换、神经网络等在MATLAB中的实现;第四部分介绍MATLAB在分形维数和经济金融优化中的应用。 本书以MATLAB优化实现为主线,结合各种优化算法函数的说明、优化模型案例的讲解,使读者易看懂、会应用。本书讲解翔实,深入浅出,既可作为高等院校数学建模和数学实验的参考教材,也可作
这是一本关于 高级/进阶 算法和数据结构的图书,主要介绍了用于Web应用程序、系统编程和数据处理领域的各种算法,旨在让读者了解如何用这些算法应对各种棘手的编码挑战,以及如何将其应用于具体问题,以应对新技术浪潮下的 棘手 问题。 本书对一些广为人知的基本算法进行了扩展,还介绍了用于改善优先队列、有效缓存、对数据进行集群等的技术,以期读者能针对不同编程问题选出更好的解决方案。书中示例大多辅以图解,并以不囿于特定语言的伪代码以及多种语言的代码样本加以闸释。 学完本书,读者可以了解高级算法和数据结构的相关内容,并能运用这些知识让代码具备更优性能,甚至能够独立设计数据结构,应对需要自定义解决方案的情况。 本书可作为高等院校计算机相关专业本科高年级学生以及研究生的学习用书,也可供从事与算法相关工作
本书以海量图解的形式,详细讲解常用的数据结构与算法,并结合竞赛实例引导读者进行刷题实战。通过对本书的学习,读者可掌握22种高级数据结构、7种动态规划算法、5种动态规划优化技巧,以及5种网络流算法,并熟练应用各种算法解决实际问题。 本书总计8章。第1章讲解实用数据结构,包括并查集、优先队列;第2章讲解区间信息维护与查询,包括倍增、ST、RMQ、LCA、树状数组、线段树和分块;第3章讲解字符串处理,包括字典树、AC自动机和后缀数组;第4章讲解树上操作问题,包括点分治、边分治、树链剖分和动态树;第5章讲解各种平衡二叉树,包括Treap、伸展树和SBT;第6章讲解数据结构进阶,包括KD树、左偏树、跳跃表、树套树和可持久化数据结构;第7章讲解动态规划及其优化,包括背包问题、线性DP、区间DP、树形DP、数位DP、状态压缩DP、插头DP和动态规
近百年来,由于大量计算的例子,数论学家增进了他们的直觉性。计算机和精心研制的算法逐渐导致出现了算法数论这一专门的领域。这个年轻的学科和计算机科学、密码学以及数学的其他分支有很强的联系。数学思想往往导致更好的算法,这是此学科的魅力之一;而对算法的广泛研究也促使数学新思想的产生和新问题的探索。本书包括由各领域首屈一指的专家对算法数论各个专题所写的二十篇综述性文章:前两篇文章为引论;随后的八篇文章覆盖了该领域的核心内容:因子分解、素性、光滑数、格、椭圆曲线、代数数论和算术运算的快速算法;后十篇文章就某个专门方面综述一些特殊课题,包括密码学、Arakelov 类群、计算类域论、有限域上的zeta 函数、算术几何与模形式理论。本书可供数学、计算机科学和密码学等相关专业的读者参考。
本书是一本全面、系统地介绍烟花算法主要研究和典型应用的学术专著,从基础、理论、进展及应用4个方面详细地介绍了烟花算法的研究内容,清晰地展示了烟花算法的研究全貌。书中不仅介绍了许多烟花算法理论研究成果,还提供了大量重要烟花算法改进算法的流程图和烟花算法的统一代码框架,同时展示了丰富的成功应用实例。 本书可作为智能科学、人工智能、计算机科学和数据科学等相关专业高年级本科生和研究生的教材或参考书,也可作为信息、控制、通信、管理、工程技术等相关领域的研究人员和工程师的参考书。
深度学习和传统机器视觉技术相融合,可以大大提高AI 技术的效率和精度。本书分上、下两篇,共19 章内容,详细讲解了机器视觉及深度学习的理论和编程实践。上篇介绍理论算法。包括机器视觉的经典图像处理算法、深度学习的理论基础和目前常用的深度学习框架。下篇介绍编程环境及系统搭建。讲解了机器视觉图像处理算法及深度学习的编程工具 VC 、Python 和 OpenCV;利用 VC 和 Python 工具,搭建图像处理的工程界面;介绍了常用的9 种深度学习框架的获得方法、安装设置、工程创建,以及深度学习工程的编译、训练、评估与部署方法。每一个搭建的工程,都提供一套可下载的源代码程序,方便读者下载学习。本书理论与实践兼顾,可为从事机器视觉技术及人工智能研究和应用的工程技术人员提供帮助,也可供高等院校相关专业师生学习参考。
本书是NOIP算法竞赛的入门教材,重点介绍算法设计竞赛的相关知识体系,将C/C 语言、算法和解题有机地结合在一起,注重理论与实践相结合,着重培养学生的计算思维能力。 本书内容涵盖了NOIP竞赛普及组和提高组所需掌握的绝大部分知识点、常见的算法分析设计及实现技巧和方法,主要内容包括计算机的基础知识,算法描述、设计工具,C/C 程序设计语言,数据结构及其相关基础算法,算法设计技术基础,数论、概率论及组合数学基础等。本书以历年相关竞赛常见考试题型及题例作为例题解析和习题。书中的绝大部分代码规范、简洁、易懂,不仅能帮助读者理解信息技术中的算法原理,在掌握各类经典算法的同时还能学会很多实用的编程技巧,提高分析解决实际问题的能力。 本书可作为全国青少年信息学奥林匹克联赛(NOIP)初/复赛、全国青少年信息学奥林匹克
本书将数学理论与实例相结合,这些实例以*先进的通用机器学习框架为基础,由Python实现,向读者介绍更复杂的算法。全书共25章,包括机器学习模型基础、损失函数和正则化、半监督学习导论、高级半监督分类、基于图的半监督学习、聚类和无监督学习模型、高级聚类和无监督学习模型、面向营销的聚类和无监督学习模型、广义线性模型和回归、时序分析导论、贝叶斯网络和隐马尔可夫模型、*大期望算法、成分分析和降维、赫布学习、集成学习基础、高级提升算法、神经网络建模、神经网络优化、深度卷积网络、循环神经网络、自编码器、生成对抗网络导论、深度置信网络、强化学习导论和高级策略估计算法。
《统计自然语言处理(第2版)》全面介绍了统计自然语言处理的基本概念、理论方法和新研究进展,内容包括形式语言与自动机及其在自然语言处理中的应用、语言模型、隐马尔可夫模型、语料库技术、汉语自动分词与词性标注、句法分析、词义消歧、篇章分析、统计机器翻译、语音翻译、文本分类、信息检索与问答系统、自动文摘和信息抽取、口语信息处理与人机对话系统等,既有对基础知识和理论模型的介绍,也有对相关问题的研究背景、实现方法和技术现状的详细阐述。 《统计自然语言处理(第2版)》可作为高等院校计算机、信息技术等相关专业的高年级本科生或研究生的教材或参考书,也可供从事自然语言处理、数据挖掘和人工智能等研究的相关人员参考。
本书归纳了程序员面试中的经典算法题,并按照由浅入深、循序渐进的顺序讲解。本书首先讲解程序员面试时需要了解的制作简历的技巧和IT名企的面试流程,以及面试时经常忽略的代码规范性问题。然后详细分析程序的时间复杂度和空间复杂库,包括如何把控程序的实际运行时间,以及编程语言的内存管理。接着讲解数组、链表、哈希表、字符串、栈与队列、二叉树、回溯算法、贪心算法、动态规划的理论基础及其相关题目。本书采用了力扣(LeetCode)的原题,方便读者在学习算法的同时,及时练习相关代码,加深对相关概念的理解。本书适合所有程序员阅读,特别是正在准备面试的程序员。希望本书可以帮助读者循序渐进地学习算法,并搭建起知识框架,提升算法功力。