本书全面且深入地呈现了深度学习领域的知识体系,系统梳理了该领域的核心知识,阐述了深度学习的关键概念、基础理论及核心思想,剖析了当代深度学习架构与技术。全书共 20 章。本书首先介绍深度学习的发展历程、基本概念及其在诸多领域(如医疗诊断、图像合成等)产生的深远影响;继而深入探讨支撑深度学习的数学原理,包括概率、标准分布等;在网络模型方面,从单层网络逐步深入到多层网络、深度神经网络,详细讲解其结构、功能、优化方法及其在分类、回归等任务中的应用,同时涵盖卷积网络、Transformer 等前沿架构及其在计算机视觉、自然语言处理等领域的独特作用。本书还对正则化、采样、潜变量、生成对抗网络、自编码器、扩散模型等关键技术展开深入分析,阐释其原理、算法流程及实际应用场景。对于机器学习领域的新手,本书是全面且
本书从人工智能(AI)的发展历史讲起,介绍了目前非常热门的深度学习加速芯片和基于神经形态计算的类脑芯片的相关算法、架构、电路等,并介绍了近年来产业界和学术界一些著名的AI芯片,包括生成对抗网络芯片和深度强化学习芯片等。本书着重介绍了用创新的思维来设计AI芯片的各种计算范式,以及下一代AI芯片的几种范例,包括量子启发的AI芯片、进一步提升智能程度的AI芯片、有机自进化AI芯片、光子AI芯片及自供电AI芯片等。本书也介绍了半导体芯片技术在后摩尔定律时代的发展趋势,以及基础理论(如量子场论、信息论等)在引领AI芯片创新方面发挥的巨大作用。*后,本书介绍了AI发展的三个层次、现阶段AI芯片与生物大脑的差距及未来的发展方向。 本书可供AI和芯片领域的研究人员、工程技术人员,科技、产业决策和管理人员,创投从业者和相关专业
本书全程图解式讲解,通过大量全彩插图拆解概念,让读者真正告别学习大模型的枯燥和复杂。 全书分为三部分,依次介绍语言模型的原理、应用及优化。*部分 理解语言模型(第1~3章),解析语言模型的核心概念,包括词元、嵌入向量及Transformer架构,帮助读者建立基础认知。*部分 使用预训练语言模型(第4~9章),介绍如何使用大模型进行文本分类、聚类、语义搜索、文本生成及多模态扩展,提升模型的应用能力。第三部分 训练和微调语言模型(第10~12章),探讨大模型的训练与微调方法,包括嵌入模型的构建、分类任务的优化及生成式模型的微调,以适应特定需求。 本书适合对大模型感兴趣的*、研究人员和行业从业者。读者无须深度学习基础,只要会用Python,*可以通过本书深入理解大模型的原理并上手大模型应用开发。书中示例还可以一键在线运行,
脑-计算机交互是通过读取特定脑神经活动,构建认知模型获取用户逻辑意图与精神状态,从而建立脑与外部设备间的直接连接通路,搭建闭环神经反馈系统。系统以脑机接口、机器学习、模式识别等关键技术为基础,围绕可穿戴干电极脑电采集、运动神经康复、认知情感建模以及多模态神经反馈等关键科学问题开展研究,开发智能脑-机交互技术。本分册首先介绍脑-计算机交互技术的原理、方法及关键技术,其次对无创脑-计算机交互系统的实现(包括SSVEP、P300、想象运动等)、植入式脑-计算机交互系统的实现、脑-计算机交互系统的医学应用以及情感脑-计算机接口的工作原理和关键算法等。
本书*且深入地呈现了深度学习领域的知识体系,系统梳理了该领域的核心知识,阐述了深度学习的关键概念、基础理论及核心思想,剖析了当代深度学习架构与技术。全书共 20 章。本书*介绍深度学习的发展历程、基本概念及其在诸多领域(如医疗诊断、图像合成等)产生的深远影响;继而深入探讨支撑深度学习的数学原理,包括概率、标准分布等;在网络模型方面,从单层网络逐步深入到多层网络、深度神经网络,详细讲解其结构、功能、优化方法及其在分类、回归等任务中的应用,同时涵盖卷积网络、Transformer 等前沿架构及其在计算机视觉、自然语言处理等领域的独特作用。本书还对正则化、采样、潜变量、生成对抗网络、自编码器、扩散模型等关键技术展开深入分析,阐释其原理、算法流程及实际应用场景。对于机器学习领域的新手,本书是*且系统的
本书对所有主要的深度学习方法和最新研究趋势进行了深入探索。全书分为上下两卷,五个部分。上卷包括两个部分:第一部分是基础算法,包括机器学习基础算法、早期神经网络算法、深度学习的正则化方法和深度学习的优化方法;第二部分是判别式模型,包括卷积神经网络(CNN)、循环神经网络(RNN)、长短期记忆模型(LSTM)、注意力机制和记忆网络。下卷包括三个部分:第三部分是生成式模型,包括深度置信网络/深度玻尔兹曼机、自编码器(AE)/变分自编码器(VAE)、生成对抗网络(GAN)、像素级生成、深度聚类等;第四部分是前沿技术,讨论深度强化学习;第五部分是安全保障,包括深度学习的可解释性和对抗样本的攻击与防御。本书特别注重学术前沿,对包括胶囊网络在内的当前最新成果进行了细致的讨论。全书构建了一套明晰的深度学习体系,同时
本书对所有主要的深度学习方法和**研究趋势进行了深入探索。全书分为上下两卷,五个部分。上卷包括两个部分:第一部分是基础算法,包括机器学习基础算法、早期神经网络算法、深度学习的正则化方法和深度学习的优化方法;第二部分是判别式模型,包括卷积神经网络(CNN)、循环神经网络(RNN)、长短期记忆模型(LSTM)、注意力机制和记忆网络。下卷包括三个部分:第三部分是生成式模型,包括深度置信网络/深度玻尔兹曼机、自编码器(AE)/变分自编码器(VAE)、生成对抗网络(GAN)、像素级生成、深度聚类等;第四部分是前沿技术,讨论深度强化学习;第五部分是安全保障,包括深度学习的可解释性和对抗样本的攻击与防御。本书特别注重学术前沿,对包括胶囊网络在内的当前**成果进行了细致的讨论。全书构建了一套明晰的深度学习体系,同时各章内
本书是对《Xilinx Zynq-7000嵌入式系统设计与实现:基于Arm Cortex-A9双核处理器和Vivado的设计方法(第二版)》一书的一次重要修订,全书共包含30章,主要内容包括Xilinx Zynq系列SoC设计导论、AMBA规范、Zynq-7000系统公共资源和特性、Zynq-7000调试和测试子系统、Cortex-A9处理器指令集、Cortex-A9片上存储器系统结构和功能、Zynq-7000 SoC的Vivado基本设计流程、Zynq-7000 GPIO原理和控制、Cortex-A0异常与中断原理和实现、Cortex-A9定时器原理及实现、Cortex-A9 DMA控制器原理和实现、Cortex-A9安全性扩展、Cortex-A9 NEON原理和实现、Zynq-7000的可编程逻辑资源、Zynq-7000的互联结构、Zynq-7000 SoC内 简单AXI-Lite IP、Zynq-7000 SoC内 复杂AXI Lite IP、Zynq-7000 AXI HP数据传输原理和实现、Zynq-7000 ACP数据传输原理和实现、Zynq-7000软件与硬件协同调试原理和实现、Zynq-7000 SoC启动与配置原理和实现、Linux开发环境的构建、Zynq-
本书以人工智能方法和生物组学数据分析为主线,阐述了人工智能中的群智能优化、机器学习、深度学习等算法的基本原理,并探讨了如何将这些算法应用于生物信息学相关问题的研究中,如蛋白质复合物挖掘、关键蛋白质识别、疾病基因预测、多种组学(转录组学、代谢组学、微生物组学)数据与疾病的关联关系预测、circRNA-RBP结合位点预测、RNA甲基化位点预测以及药物发现等。本书系统收集整理了生物组学相关数据库,另结合应用问题,从人工智能算法设计到具体流程计算,再到结果分析,均给出了详细步骤,以上均是本书的特色所在。
本书由谷歌首席科学家Lyon撰写,是一部关于听觉研究的系统性学术著作。书中提出利用CARFAC模型模拟耳蜗对声音信号的分析,利用带有精细时序结构的SAI表征听觉神经模式,明确反对将耳蜗视作傅里叶频率分
本书全面而透彻地介绍了元学习和AutoML的几乎所有方面,涵盖了基本概念和架构、评估、数据集、超参数优化、集成和工作流,以及如何使用这些知识来选择、组合、调整和配置算法和模型,以 快 好地解决数据挖掘和数据科学问题。因此,它可以帮助开发人员开发可以通过经验改进自己的系统。 本书是2009年 版的重大 新,共18章,内容几乎是上一版的两倍。这是作者能够 深入地涵盖 相关的主题,并结合各自领域 研究的概述。本书适用于对机器学习、数据挖掘、数据科学和人工智能领域感兴趣的研究人员、研究生及该领域的从业人员。
本书在概述人工智能与地球物理勘探的基本原理及二者关系的基础上,总结了以深度学习为代表的新一代人工智能技术在地球物理勘探领域中取得的研究进展与核心成果;主要介绍不同人工智能算法在地震资料处理、地震资料解释、地震资料反演和储层流体预测四大类场景中的实现原理及数值模拟数据、物理模拟数据和实际数据的效果分析,并对人工智能地球物理勘探的未来发展方向进行总结与展望。 本书适合从事地球物理勘探与人工智能交叉研究的本科高年级学生、研究生阅读,也可以供高校、企业、科研院所等从事人工智能地球物理勘探及其他应用场景相关的研究人员借鉴与参考。
《机器人手册》(原书第2版)第2卷 机器人技术共分三篇:传感与感知、操作与交互、移动与环境。第3篇传感与感知详细介绍了机器人不同的感知形态和跨时空的传感数据融合技术,主要用于生成机器人模型以及外部环境,涵盖力、触觉传感器,惯性传感器、GPS和里程计,声呐传感器,距离传感器等常用的机器人传感器,三维视觉导航与抓取,视觉对象类识别,视觉伺服,以及多传感数据融合。第4篇操作与交互讲解了与机器人操作与交互相关的技术,其中机器人操作技术主要涉及面向操作任务的运动、接触建模与操作、抓取、协同操作臂、移动操作与主动操作感知等问题;机器人交互技术重点讨论触觉技术、遥操作机器人、网络机器人等。第5篇移动与环境介绍了环境建模、同步定位与建图、运动规划与避障,不同作业环境下的机器人,包括腿式机器人、轮式机器
全书围绕Alink(阿里在Flink基础上做的开源版本)的展开,以实例为主阐述Alink的使用。?以机器学习的知识架构将各个章节串联起来,每个章节配合实例,用户 容易理解和入手尝试。?数据会采用读者能免费下载的数据集,在加上Alink本身是开源的、免费的。用户 起来没有成本。?实例实现的源代码,准备放在Alink开源git上,大家容易看到,可以直接下载,代码旁边会有实体书的介绍?以机器学习的知识架构将各个章节串联起来,每个章节配合实例,用户 容易理解和入手尝试。?数据会采用读者能免费下载的数据集,在加上Alink本身是开源的、免费的。用户 起来没有成本。?实例实现的源代码,准备放在Alink开源git上,大家容易看到,可以直接下载,代码旁边会有实体书的介绍