机器学习是计算机科学的重要分支领域. 本书作为该领域的入门教材,在内容上尽可能涵盖机器学习基础知识的各方面. 全书共 16 章,大致分为 3 个部分:第 1 部分(第 1~3 章)介绍机器学习的基础知识;第 2 部分(第 4~10 章)讨论一些经典而常用的机器学习方法(决策树、神经网络、支持向量机、贝叶斯分类器、集成学习、聚类、降维与度量学习);第 3 部分(第 11~16 章)为进阶知识,内容涉及特征选择与稀疏学习、计算学习理论、半监督学习、概率图模型、规则学习以及强化学习等. 每章都附有习题并介绍了相关阅读材料,以便有兴趣的读者进一步钻研探索. 本书可作为高等院校计算机、自动化及相关专业的本科生或研究生教材,也可供对机器学习感兴趣的研究人员和工程技术人员阅读参考.
内容简介本书是AI时代法律人和法律机构的生存指南,它从业务角度全面总结了法律人如何使用AI提升工作效率,以及律所等机构如何使用AI提升运营效率;它从技术角度详细讲解了如何构建法律行业的垂直大模型、知识库和智能体。它由中国领先的法律科技企业新橙科技(iCourt)官方出品,是iCourt的CEO带领团队核心成员总结的iCourt在AI领域的理论研究成果和实战经验。全书内容分为五个部分:第一部分(第1章) AI带来的影响与应对措施从法律人的视角介绍了AI大模型的基础知识,以及AI在法律领域的应用趋势和场景。从宏观角度深入探讨AI对法律行业带来的积极影响和消极影响。最后部分为法律行业从业者和法律机构应对 AI 带来的变革提供相应策略。第二部分(第2~6章)AI 助力法律人提升工作效率围绕类案检索、案情分析、法律咨询、法律文书写作、合同审查等法
书中按照游戏项目开发的流程编排内容,用一个综合实例贯穿全书,详细介绍了蓝图的应用、游戏基础逻辑的编写、UI的制作、AI的开发、动画的制作、C 开发等知识。
机器学习实战 基于Python SKlearn的解析 本书前6章介绍基础准备、数据探索、数据预处理、机器学习模型(分类、回归、聚类)、集成学习、模型评估及持久化;第7章介绍机器学习在土木工程中的应用场景,并以五个工程案例系统化讲解SKlearn库的应用。 本书 轻原理、重实践 ,适合广大对机器学习有兴趣,并且想系统学习数理统计的读者;也可用作机器学习培训、高校教材或作为学习SKlearn库的工具书。
大脑如何产生新想法?思维如何产生,又是如何运作的?意识缘何形成?什么是情感、感觉、想法?如果将人类大脑看成一台机器,那么这是否有益于我们设计出能够像人一样能理解、会思考的高级人工智能 情感机器? 情感是人类特有的一种思维方式,如果机器具备了情感,是不是就可以取代人类? 在《情感机器》中,人工智能之父马文 明斯基有力地论证了:情感、直觉和情绪并不是与众不同的东西,而只是一种人类特有的思维方式。也同时揭示了为什么人类思维有时需要理性推理,而有时又会转向情感的奥秘。通过对人类思维方式建模,他为我们剖析了人类思维的本质,为大众提供了一幅创建能理解、会思考、具备人类意识、常识性思考能力,乃至自我观念的情感机器的路线图。
本书的目标是帮助读者全面、系统地学习机器学习所必须的数学知识。全书由8章组成,力求精准、*小地覆盖机器学习的数学知识。包括微积分,线性代数与矩阵论,*化方法,概率论,信息论,随机过程,以及图论。本书从机器学习的角度讲授这些数学知识,对它们在该领域的应用举例说明,使读者对某些抽象的数学知识和理论的实际应用有直观、具体的认识。 本书内容紧凑,结构清晰,深入浅出,讲解详细。可用作计算机、人工智能、电子工程、自动化、数学等相关专业的教材与教学参考书。对人工智能领域的工程技术人员与产品研发人员,本书也有很强的参考价值。对于广大数学与应用的数学爱好者,本书亦为适合自学的读本。
《小型智能机器人制作全攻略(第4版)》是小型智能机器人制作的资料宝典,通过实例讲解,告诉你制作机器人需要掌握的综合知识,内容翔实,通俗易懂。初学者可以边玩边学,了解小型智能机器人设计、制作和使用的技巧。有一定制作经验的爱好者也可以从《小型智能机器人制作全攻略(第4版)》中“淘”到不少好点子。这本《小型智能机器人制作全攻略(第4版)》意在启发你使用不同的组件来构建机器人,你可以按自己喜欢的方式把书里介绍的模块化的项目*以组合,创建出各种形状和尺寸、高度智能化的机器人。
本书结合C 和OpenCV全面讲解计算机视觉编程,不仅涵盖计算机视觉和图像处理的基础知识,而且通过完整示例讲解OpenCV的重要类和函数。主要内容包括OpenCV库的安装和部署、图像增强、像素操作、图形分析等各种技术,并且详细介绍了如何处理来自文件或摄像机的视频,以及如何检测和跟踪移动对象。第3版针对OpenCV新版本进行了修改,调整了很多函数和算法说明,还增加了立体图像深度检测、运动目标跟踪、人脸识别、人脸定位、行人检测等内容,适合计算机视觉新手、专业软件开发人员、学生,以及所有想要了解图像处理和计算机视觉技术的人员学习参考。
本书共12 章,主要内容包括OpenCV 4 基础知识,OpenCV 的模块架构,图像存储容器,图像的读取与显示,视频加载与摄像头调用,图像变换,图像金字塔,图像直方图的绘制,图像的模板匹配,图像卷积,图像的边缘检测,腐蚀与膨胀,形状检测,图像分割,特征点检测与匹配,单目和双目视觉,光流法目标跟踪,以及OpenCV 在机器学习方面的应用等。 本书面向的读者是计算机视觉与图像处理等相关专业的高校师生、企业内转行计算机视觉与图像处理的工作人员、已有图像处理基础并想了解OpenCV 4 新特性的人员。