《几何原本》成书于公元前300年左右,全书13卷,是古希腊数学家欧几里得的一部不朽之作。它既是一本数学著作,也是哲学巨著,标志着人类首次完成了对空间的认识。《几何原本》自问世之日起,在长达2000多年的时间里,历经多次翻译和修订,自1482年首个印刷本出版,至今已有1000多种不同版本。 欧几里得建立了定义和公理,并研究各种几何图形的性质,从而确立了一套从公理、定义出发,论证命题得到定理的几何学论证方法,并系统地总结了泰勒斯、毕达哥拉斯及智者学派等前代学者在实践和思考中获得的几何知识,集整个古希腊数学的成果与精神于一身。对人们理性推演能力的影响,即对人的科学思想产生了深刻且巨大的影响。
本书诚实但又不失风趣地记录了作为人类学家的作者在非洲喀麦隆多瓦悠人村落两次进行田野工作的经历,将人类学家如何克服乏味、灾难、生病与敌意的真实田野生活拍案叫绝地呈现在读者面前。不同于一般的人类学研究报告,这是一部令人捧腹不止的人类学笔记,透过幽默的笔调,读者看到了人类学者如何与研究对象进行互动,在互动中如何调整他的学术成见,以及田野工作上的琐事如何影响后来研究结果、研究的盲点与反思。因此不管是严肃的读者、无聊地只想打发时间或者是向往非洲原始部落的异国情调而蠢蠢欲动的旅人,巴利这本书*是一个有趣的选择。
认知神经科学是一门年轻而富有活力的交叉学科。它横跨认知心理学、生理心理学、神经科学等领域,致力于探寻人类心智的生物学奥秘,站在心理学、神经学、信息科学、临床医学等领域的发展前沿。 一直以来,本书都被誉为认知神经科学教材的金标准,由该领域的主要创始人之一迈克尔 S. 加扎尼加(Michael S. Gazzaniga)等世界知名学者撰写。本书(原著第五版)对内容编排进行了较大幅度的调整,深入浅出地介绍了复杂的核心认知过程(大脑半球特异化、感觉和知觉、物体识别、注意、运动、记忆、情绪和语言)以及控制过程(认知控制、社会认知和意识)是如何由大脑潜在的生物学基础实现的。本书展现了认知神经科学领域的前沿科学发现和临床应用,既是学习认知神经科学 第1课 的良伴,也能为认知科学、神经科学、脑科学、复杂系统、人工智能、计算社
这本经典的概率论教材通过大量的例子系统介绍了概率论的基础知识及其应用,主要内容有组合分析、概率论公理、条件概率、离散型随机变量、连续型随机变量、随机变量的联合分布、期望的性质、极限定理和模拟等,内容丰富,通俗易懂.各章末附有大量的练习,分为习题、理论习题和自检习题三大类,并在书末给出自检习题的全部解答。 本书是概率论的入门书,适合作为数学、统计学、经济学、生物学、管理学、计算机科学及其他各工学专业本科生的教材,也适合作为研究生和应用工作者的参考书。 2步获取导学视频: ①微信视频号关注 IT阅读排行榜 ②点击 直播回放 栏,上滑寻找
流 是指我们在做某些事情时,那种全 贯注、投入忘我的状态 这种状态下,你甚 感觉不到时间的存在,在这件事情完成之后我们会有 种充满能量并且非常满足的感受。其实很多时候我们在做自己非常喜欢、有挑战并且擅长的事情的时候,就很容易体验到 流,比如爬山、游泳、打球、玩游戏、阅读、演奏乐器还有工作的时候。 理理论之父、积 理学奠基人米哈里 契克森米哈赖在3 前,在大量案例研究基础上,开 性地提出了 流 的概念。本书系统阐述了 流理论,进入 流状态的条件,从日常生活、休闲娱乐、工作、人际关系等各方面,阐述如何进入 流状态。对 理学爱好者和研究者来说,《 流》是理解积 理学等领域不可或缺的理论素材;对大众读者来说,这更是 本提升幸福感和效率的行动指南。
达 芬奇是意大利伟大的艺术家、文艺复兴时期的领军人物,同时也是雕塑家、建筑师、解剖学家、自然科学家。本书以达 芬奇的一生为主线,结合时代背景,介绍了他的人生经历和在艺术创作和科学研究上的成长与发展,同时对他的经典作品《蒙娜丽莎的微笑》《岩间圣母》《抱银鼠的女子》《最后的晚餐》的经历进行了细致的讲解,多方面展示了这位 旷世奇才 对后世的影响。真实而细腻地解读了艺术家的生活与创作,使得他独特的人格魅力和艺术风采得以更好地为人所知。
本书是一本非数学专业主要是文科及艺术类专业的数学教材,讲述方式活泼,案例贴近生活,读者可以在轻松学习中体会数学乐趣和意义。全书分为三大部分:归纳和演绎、逻辑和数;代数和几何;概率统
《拓扑学》(原书第2版)系统讲解拓扑学理论知识。在美国大学作为教材近20年,*近由原作者进行了全面更新。第1部分为一般拓扑学,讲述点集拓扑学的内容,介绍作为核心题材的集合论、拓扑空问、连通性、紧致性以及可数性公理和分离性公理;第二部分为代数拓扑学,讲述与拓扑学核心题材相关的主题,其中包括基本群和覆叠空问及其应用。 《拓扑学》(原书第2版)较大的特点在于概念引入自然,循序渐进。对于疑难的推理证明,将其分解为简化的步骤,不给读者留下疑惑。此外,书中还提供了大量练习,可以巩固加深学习的效果。严格的论证、清晰的条理、丰富的实例,让深奥的拓扑学变得轻松易学。
本书为 十二五 普通高等教育本科*规划教材《分析化学》(第6版,上册)的配套教学参考书。全书共11章,编写顺序与主教材一致,对主教材的思考题和习题进行了详细解答,部分章节还增加了一些补充题。 本书既可作为高等学校化学类及相近专业的本科生学习分析化学课程的习题集,又可作为高年级学生考研复习阶段的参考资料,同时也可供广大教师作为教学参考书使用。
本元素周期表以彩色图片的形式展示,A面为元素性质表格,主要是原子量、电子构型、摩尔体积、原子半径、电离能、晶体结构、电负性、电子亲合能等数据。B面以彩色插图形式表示本元素代表性的应用或性质,并配以文字简单介绍。另附一小册子介绍各元素的性质和代表性反应等,以满足读者在不同环境中的需求。
【全3册】生物太好玩 物理太好玩 化学太好玩
如果你是一个有 数学焦虑症 的人,你可能不会相信有一天你会爱上数学。 原因在于,我们在学校所学的数学知识看上去不过是一堆沉闷的规则、定律和公理,都是前人传下来的,而且是不容置疑的。在《魔鬼数学》中,世界知名数学家乔丹?艾伦伯格告诉我们这样的认识是错误的。数学与我们所做的每一件事都息息相关,可以帮助我们洞见在混沌和嘈杂的表象之下日常生活的隐性结构和秩序。数学是一门告诉我们 如何做才不会犯错 的科学,是经年累月的努力、争论所锤炼出来的。 你应该提前多长时间到达机场?民意调查的结果真的能代表人们的意愿吗?为什么父母都是高个子,孩子的身高却比较矮?用什么策略买**才能中大奖?《魔鬼数学》运用数学方法分析和解决了很多的日常生活问题,帮助数学门外汉习得用数学思维思考问题的技能。 作者用数