本书根据作者多年的教学改革实践修订而成,内容包括*事件与概率、离散型*变量及其分布、连续型*变量及其分布、*变量的数学特征、*变量序列的极限、现代概率论基础简介、数理统计的基本概念、参数估计、假设检验、回归分析与方差分析。书中各章附有相当数量的习题,书末附有习题的参考答案,供读者查阅。本书在*制定的教学大纲的基础上,紧扣硕士研究生入学考试大纲,并以此规范概率统计中的术语与记号。
本书一方面,以《教师教育课程标准》、《教师资格标准》和《数学学科知识与教学能力》(初级中学)考试大纲为依据,以指导和辅助学生有效整合教师教育相关大学学科知识学习为指向,密切结合学习与应试需求,使学习者通过阅读和学习本教材,具有适应初中教学和和国家教师资格考试相关科目的数学学科知识与教学能力;另一方面,以初中数学教师应具有的数学学科知识与教学能力为核心内容,以已有考试真题和命题趋势为导向解读数学学科知识与教学能力中各类知识的学习要点和应试策略。
介绍抽象代数学的基础知识,内容有:群论、环论、域论以及域上的伽罗华理论,本书特点:内容丰富、处理简洁。
内容简介 近世代数是代数学的一个基础学科,讲述代数基本结构的特性.本书除系统介绍群、环和域的基础知识(包括域的有限伽罗瓦扩张理论)之外,还力图强调近世代数中的思想和方法.书中有大量习题.除主线内容之外,还增加一些附录用来开拓和深化所学内容.本书在中国科学技术大学讲授多年的讲义基础上修改写成,可作为高等学校数学系基础课教材,也可供数学工作者和通信、计算机科学等领域的工程技术人员参考.
本书共分4个章节,具体内容包括函数、极限与连续、一元函数微分学、一元函数积分学。另外,书后还附加了数学实验(MATLAB在微积分中的简单应用)、微积分简史、微积分学常用公式和习题参考答案以供读者作为参考。该书可供各大专院校作为教材使用,也可供从事相关工作的人员作为参考用书使用。
本书是作者在复旦大学数学系主讲 空间解析几何 课程20多年的结晶,全书共3章,*章,直线与平面;第二章,曲线与二次曲面;第三章,非欧几何,包括球面三角形、射影平面几何与双曲平面几何等内容. 书中许多定理和事实是重新证明过的,有些章节完全是作者自己编写的. 每章附有一定数量的习题,其中不少习题是复旦大学数学系 空间解析几何 课程的考题. 本书可作为综合大学数学和应用数学专业 空间解析几何 课程的教材,也可作为教师教学参考用书.
本书对非线性*化的理论、算法及相关技术作了比较系统的介绍。在内容的选取方面,尽可能避免过分复杂的理论分析,以适应不同专业、不同层次技术人员对*化技术的需求,另外,也尽可能地增加一些数值例子或经济管理方面的应用实例。全书共分9章。*章主要介绍*化的基础理论;第二章介绍无约束*化问题的*性条件以及线搜索技术;第三章主要介绍无约束*化算法,主要有*速下降法、Newton法、共轭梯度法;第四章主要讨论约束优化问题的*性条件;第五章介绍Lagrange对偶理论;第六章介绍线性规划;第七章介绍二次规划的求解算法;第八章介绍一般非线性约束*化问题的罚函数法;第九章给出两种特殊规划:几何规划和多目标规划,并给出一些应用实例。
本书是作者在多年教学经验的基础上撰写的一部实变函数教材,第二版在第一版使用9年的基础上作了修订,第三版特别增加了部分习题参考答案与提示。本书内容包括:集合与实数集、Lebesgue测度、可测函数、Lebesgue积分、微分和积分、Lp空间。每章后均附习题与例题,以便于读者学习和掌握实变函数论的基础知识。
胡里克编著的《初等代数几何(第2版)》是代数几何的一个导引,其目的是给出代数几何的基本概念和方法,并用大量例题对它们进行解释,这可以让读者在一些补充资料的帮助下独立进行工作。《初等代数几何(第2版)》特意保持使用初等语言。书中一方面展开一般理论,另一方面则处理具体的例题和应用,并着重于这两者之间的相互作用和联系。 《初等代数几何(第2版)》适合大学数学系的本科生阅读参考,他们已经学过了代数和函数论的基础课程。《初等代数几何(第2版)》的新版做了重大修改,增添了许多新图和习题,所有习题都有解题提示。
本书是作者多年来在南开大学数学系讲授泛函分析课程的基础上写成的。全书共分6章:第一章,距离空间与拓扑空间;第二章,赋范线性空间;第三章,有界线性算子;第四章,Hilbert空间;第五章,拓扑线性空间;第六章,Banach代数。本书可作为泛函分析的一本入门教材。每章末附有一定量的习题。
Б.П.吉米多维奇是前苏联有影响的教育家和数学家。他主编的《吉米多维奇数学分析习题集》(含4462道习题),内容丰富,覆盖面广泛,针对性强,在我国有较大的影响,书中的许多习题,都广泛地被我国多所高等院校《微积分》教材所采用,有些题目甚至出现在全国考研等试题中。《吉米多维奇 高等数学习题精选精解》。对该书进行了精选,共分八章,每章又分若干节。在章节设置上与财经院校《微积分》教材基本一致,涉及的内容涵盖了《微积分》的全部主题,涵盖了硕士研究生入学考试数学三大纲的全部内容。
本书内容包括行列式、矩阵、n维向量与线性方程组、线性空间、矩阵的对角化、实二次型和线'性变换等线'性代数的基本知识以及基本线性代数问题的计算机实现,通过将线性代数的基本知识与计算机相结合使学生能利用数学软件解决一些简单的线性代数的实际问题。书末还给出了有关的Matlab软件的使用说明。
本书介绍了线性代数的基本理论,主要包括用消元法解高阶方程组(包括适定、超定和欠定),用向量空间理解线性代数,以及线性变换的实际应用三个方面。通过近50个应用实例,介绍了它们的建模方法和解题程序。 本书的特色:(1) 实用化:本书以工科的后续课程及实际工程问题的解题需要选择内容,包含十几个应用例题;(2) 大众化:简化理论,使具有高中毕业程度的读者用较少的学习时间(约30学时)就能基本掌握;(3) 现代化:用计算机软件(MATLAB)来解决问题,不依靠笔算。 本书的读者对象为在职工程师(继续教育读物)、应用型技能型专业的学生(以本书为线性代数教材)以及普通高校本科学生(以本书为参考书)。
本书在第一版的基础上增加了与代数几何和组合数学相交叉的内容。 本书在本科抽象代数课程的基础上讲述了交换代数的基本的也是重要的Hilbert基定理、 Hilbert零点定理、理想的准素分解、相伴素理想、维数、重复度、正则环和正规环等内容.同时,对应地讨论了代数集的基本性质、代数集的分解和维数、代数簇的非奇异性和正规性等,还讨论了组合交换代数的基本内容。
《高等数学同步辅导》与同济大学应用数学系编写的《高等数学》(本科少学时类型)教材相配套,分上、下两册,共十一章,包括函数与极限、导数与微分、中值定理与导数应用、不定积分、定积分及其应用、微分方程、向量代数与空间解析几何、多元函数微分法及其应用、重积分、曲线积分、无穷级数等内容。每一章由内容摘要、典型例题与同步练习、练习题(题后附有参考答案)三部分组成。本书主要阐述了《高等数学》的基本理论和基本方法,剖析了《高等数学》的重点和难点。本书由周晖杰等主编。
用常规和母函数方法解决排列、组合、分配问题的技巧;用递推关系、容斥原理、棋盘多项式等求解计数问题的方法与技巧;图形可变换情况下染色方案的统计方法;存在性问题的证明方法与技巧。其中含实用例题300多个。
本书是高等学校文科(包括经管类)各专业的数学教材,分上、下两册。上册含一元函数的微积分和线性代数部分,内容包括初等函数、极限与连续、变化率与导数、积分、线性代数初步、矩阵与线性方程组、矩阵的特征值与特征向量、二次型。下册含多元函数的微积分、常微分方程和概率统计部分,内容包括多元函数的微分、二重积分、无穷级数、常微分方程、随机事件的概率、随机变量及其概率分布、数理统计初步。各章均配有适当、适量的习题供读者学习巩固。
《统计学基础习题集(财会专业高职高专十三五 规划教材)》是根据周礼艳、李畅主编的《统计学基础 》一书编写而成,共包括9套习题、1套期中测试模拟 试题及2套期末测试模拟试题。其中,9套习题分别对 应九大项目,即统计概述、统计调查、统计整理、统 计指标、时间数列、统计指数、抽样推断、相关分析 和回归分析、EXcel在统计中的应用。期中测试模拟 试题设置在统计指标习题之后,对前4个项目的内容进 行总结和复习。2套期末测试模拟试题对9个项目的内 容进行了概括和梳理,对重点和难点部分进行着重练 习。习题集内容丰富全面,理论与实际紧密结合,难 易程度搭配合理,具有较强的实用性。 本书可以作为高职高专经济、管理类专业的辅助 教材,也可以作为经济管理工作者和研究人员的参考 读物。
《数回》是“世界谜题锦标赛直通车:形形色色的智力谜题”丛书中的一本。全书斯200个题目,集结了5x5、6x6、7x7和9x9四种题型,每种题型的难度设置由易至难,循序渐进。本书还配备了独特的解题方法介绍,不仅能够使初次接触谜题的爱好者轻松上手玩谜题,而且也是常玩智力谜题的高手们练习和提高解题水平的手册。
本书为“十二五”普通高等教育本科国家级规划教材,是《中国科学技术大学数学教学丛书》之一。主要介绍在应用中经常遇到的几种基本随机过程,如Poisson过程、更新过程、Markov过程、平稳过程、Brown运动、Ito微分公式、线性随机微分方程,以及鞅过程和停时。全书材料丰富,每章结合大量有实际背景的例子来解释基本概念,并配有一定量的习题。
《高等数学引论》是我国著名数学家华罗庚在上世纪60年代编写的教材,曾在中国科学技术大学讲授,全书共分四册,包含了微积分、高等代数、常微分方程、复变函数论等内容,全书反映了作者的“数学是一门有紧密内在联系的学问,应将大学数学系的基础课放在一起来讲”的教学思想,还包括了作者的“要埋有伏笔”、“生书熟讲,熟书生温”等教学技巧,书中还介绍了数学理论的不少应用。这使得本套书不同于许多现行的教科书,是一套有特色、高水平的高等数学教材。 册包括实数极限理论、微分和积分及其应用、级数理论、方程的近似解等内容:第二册包括多元函数的微积分、多重级数理论、曲线及曲面、场论、Fourier级数、常微分方程组等内容;第三册主要介绍复变函数论的一般理论;第四册主要介绍代数矩阵论的基本理论及其应用。 本书再版时得
本书是根据复旦大学的教材改编而成的。全书共分6章,主要介绍坐标系统、变换、机构运动的数学表示、曲线模型、曲面模型、共轭曲面等内容。 本书可供高等学校有关专业用作应用几何课程的教材,也可供从事应用数学工作以及计算机辅助设计和制造的科技工作者参考。