上海交通大学钱学森研究中心编*的《智慧的钥匙--钱学森论系统科学》是一本以公务员和大学师生为主要读者对象的钱学森 论系统科学 的原*精选。初版于2005年4月,此次再版,增加了若干篇文章。 从事力学、导弹、航空、航天的研究和实践,这是人们 熟知 的钱学森。但是在1979年,钱学森说他研究力学已是 从前 的事了。钱学森又说: 我们完全可以建立起一个科学体系 去解决我们中国社会主义建设中的问题 。阅读本书,我们走进了钱学森晚年的学术世界,再次感受钱学森开创的 系统科学 在新时代背景下的应用价值和现实意义。
本书介绍黎曼几何中的重要技巧和定理,为满足那些希望专门研究黎曼几何的学生,书中还包含大量关于较深论题的背景材料。本书还介绍了最新的研究问题。各种练习散布全书,帮助读者深入理解书中内容。本书是为数不多的整合了黎曼几何的几何和分析两方面内容的专著之一,适合熟悉张量和斯托克斯定理等流形理论的读者,可作为研究生一学年课程的教材。
本书是美国著名数学竞赛专家Titu Andreescu教授及其团队编写的数学竞赛数论知识教材。书中涵盖了整除、优选公约数、算术基本定理、数论函数、同余方程、模p多项式、二次剩余、p进赋值等主题。通过精彩的例题重点展现了带余除法、裴蜀定理、高斯引理、同余计算、积性函数、费马小定理、强三角不等式、二次互反律、素数估计、局部一整体原则的应用。课后共有二百多道习题供练习。本书适合热爱数学的广大教师和学生使用,特别是从事数学竞赛相关事业的人员参考使用。
?书 ? ? ? 名 ? ?应用数理统计(第三版) ?作 ? ? ? 者 ?刘剑平 等 主编 ?出 ?版 社 ?华东理工大学出版社 ?出版时间 ?2019年06月 ?I ?S ?B N ?978-7-5628-5890-4 ?页 ? ? ? 数 ?263页 ?字 ? ? ?数 ?413千字 ?开 ? ? ? 本 ?16 开 ?重 ? ? ?量 ?0.47千克 ?定 ? &
本书为“十二五”普通高等教育本科国家级规划教材,是《中国科学技术大学数学教学丛书》之一。主要介绍在应用中经常遇到的几种基本随机过程,如Poisson过程、更新过程、Markov过程、平稳过程、Brown运动、Ito微分公式、线性随机微分方程,以及鞅过程和停时。全书材料丰富,每章结合大量有实际背景的例子来解释基本概念,并配有一定量的习题。
本书是大学数学系本科生的复变函数教材,是作者在南京大学数学系复变函数课程讲义的基础上修订而成。全书共分八章,主要内容包括复数,复变函数,复变函数的积分,级数,留数,共形映射,调和函数和解析开拓。
《高观点下的初等数学》是具有世界影响的数学教育经典,由菲利克斯·克莱因根据自己在哥廷根大学为中学数学教师及学生开设的讲座所撰写,书中充满了他对数学教育的洞见,生动地展示了一流大师的风采。本书出版后被译成多种文字,影响至今不衰, 对我国数学教育工作者和数学研习者很有启发。 《高观点下的初等数学》共分为三卷——第一卷“算术、代数、分析”,第二卷“几何”,第三卷“准确数学与近似数学”。
最优化是运筹学的一个重要分支,在很多领域具有广泛的应用。本书系统地介绍了线性规划、无约束优化及约束优化的基础理论和求解方法,主要内容包括:线性规划的对偶理论与最优性条件、无约束优化的最优性条件、约束优化的最优性条件与鞍点定理;求解线性规划的单纯形算法、内点算法、非内部连续化算法;求解无约束优化的最速下降法、牛顿法、共辄梯度法、拟牛顿法、非单调线搜索法、信赖域法;求解约束优化的序列无约束优化法、可行方向法、序列二次规划法等,也简单介绍了多目标规划的基本理论与求解方法。本书内容丰富,力求深入浅出、通俗易懂,每章后都附有大量的习题,便于教学。
在国家自然科学基金委员会天元基金领导小组委托西安交通大学理学院举办的“西部与周边地区高等学校非数学类数学教师培训班”上,12位教授应邀联合开设了“从大学数学走向现代数学”的系列讲座,本书即为该系列讲座的集成。书中各篇从大学数学中的某些基本概念与原理出发,以简短的篇幅阐明这些基本概念、原理如何发展到近代数学的相关分支与内容,使读者能更清楚地了解大学数学与现代数学的联系,从而能从更高的观点和更全面的视角理解大学数学内容。主要内容包括:从代数运算到代数结构、从有限维空间到无限维空间、从函数到算子、从序列收敛到网收敛、从导数到广义导数、从Newton-Leibniz公式到Stokes公式、从Taylor公式到学习理论、从矩阵的特征值到算子的谱、从微分方程到动力系统、从随机变量到随机过程、从数学应用题到数学建模、从Stirling
这本书不仅包括三角范畴的基本内容,还包括三角范畴在代数几何、代数拓扑 、交换代数、代数分析、K-理论及表示理论等领域中的应用。2004 年,上海交通大学章璞教授写了《三角范畴和导出范畴七讲》的讲义,2010 年又写了《三角范畴和导出范畴九讲》的讲义。我们相信许多国内学生都读过这些讲义,从中学到了有关三角范畴的初步知识,并受益匪浅。2015 年,科学出版社出版了章璞教授的《三角范畴与导出范畴》 书。该书是国内第 本系统介绍三角范畴与导出范畴的学术著作,它详细地介绍了三角范畴、同伦范畴、导出范畴、稳定范畴及它们在代数表示论中的应用,作者在前言中详细地介绍了三角范畴和导出范畴的起源。2004 年,Asadollahi 和 Salarian 在《代数杂志》上发表了 篇关千三角范畴 的 Gorenstein 对象的文章,这篇文章将模范畴中的 Gorenstein 投射模和
本书属于数学概览系列,选编了杰出数学家Robert Langlands的综述性文章,介绍了Langlands纲领的起源和发展及其创始人的数学生活。Langlands纲领将看似无关的学科如数论、分析、代数和几何联系在一起,揭示了所有数学的深层结构,并提供了解决棘手问题的新方法,现在经常被描述为 大统一数学理论 。本书由季理真选文,征求了作者和其他著名数学家的意见,并可 获得无偿的专有出版权,大多数文章还有作者本人及其他数学家的评论。 书中所涉及的内容称得上是20世纪数学上重要的成就之一,但大部分都是思想性的文章,并非对某个定理的详细证明,有利于读者更快地一览当代数学的前沿。透过书中的内容,读者可以体会Langlands如何看待数学并提出Langlands纲领。Langlands教授还亲自为本书撰写了很长的自序,分享了他的数学生涯,其对所关心的数学的想法和热情也对
本书是在复分析领域产生了广泛影响的一本著作。作者独辟蹊径,用丰富的图例展示各种概念、定理和证明思路,十分便于读者理解,充分揭示了复分析的数学美。书中讲述的内容有作为变换看的复函数、默比乌斯变换、微分学、非欧几何学、环绕数、复积分、柯西公式、向量场、调和函数等。
本书为学术专著,对时间依赖变分不等式的解的存在性、*性、算法、解集的性质和时间依赖变分不等式的应用进行了研究,介绍了与变分不等式相关的基本情况、来源于粘弹性材料的准静态摩擦接触问题的广义发展变分不等式,将广义发展变分不等式从Hilbert空间扩充到了Banach空间,在一定假设条件下,利用Banach不动点定理,得到了广义发展变分不等式解的存在性和*性,给出了这个问题的两个数值逼近格式,并给出了解的存在性和误差估计。本书研究了有限维空间中的微分逆变分不等式组、有限维空间中一类微分逆混合变分不等式,在一些合适的条件下,给出了可逆混合变分不等式的解集满足线性增长的条件和可逆混合变分不等式的解集的性质,得到的结论扩展并丰富了可逆混合变分不等式和可逆变分不等式的某些已有的结果。
本书是博弈论领域的两位*大师(诺贝尔经济学奖得主让 梯若尔和美国科学院院士朱 弗登伯格)的集大成之作,不仅涵盖了博弈论的方方面面,而且对每一个论题都给出了严密的数学推导和证明,并配以丰富的实例和精心构思的习题。自1991年出版以来,本书以其在博弈论体系和发展方向上的把握,立即成为国际上博弈论领域的权威教材,至今无人超越,对全世界博弈论教育产生了深远影响。此书是经济学研究生和高年级本科生学习博弈论的经典教材,也是任何对博弈论有兴趣的读者的重要参考书。 本书是世界图书出版公司推出的 世界博弈论经典 系列中的*册, 世界博弈论经典 分为 经济与社会科学系列 和 计算与信息科学系列 两个子系列,共有几十册,这些经典名著的作者中有诺贝尔经济学奖得主让 梯若尔(Jean Tirole)和罗杰 迈尔森(Roger Myerson),以及呼声很
本书以生动活泼的形式,通俗地介绍了对数的发明、这一发明的重大意义、如何用它来解决实际问题,以及常用对数的诞生和应用;翔实地揭示了自然对数的诸多之谜?它的底e为什么与圆周率π一样在整个科学中大放异彩?为什么数学家要用e作为自然对数的底?以e为底的对数为什么叫自然对数?e究竟是一个什么样的数?…… 本书不但把e融入整个数学以至科学之中,而且把人文精神融入其中,对提高人的综合素质,特别是培养人的健康心理大有裨益。
本书是现代图论教学中被广泛采用的研究生教材,它在前4版的基础上进行了进一步扩充和更新。其叙述的方式非常有特色:先解释定理的意义、证明的思路,并对主要思路进行描述,再提供详尽严格的证明,从而阐述图论的核心内容,让读者容易地了解这个领域的精髓所在。特别地,对若干图论中的重要定理给出多种证明。 本书囊括了当代图理论中最重要的专题,对每个专题从基本知识,到主要的结果和技巧进行介绍,并指出当前的研究主流和方向,是不可多得的兼顾教学和研究的专著。
《工科数学分析教程(下册)》是一本信息化研究型教材. 本书包括函数 序列与函数项级数、傅里叶级数与傅里叶变换、多变量函数的极限与连续、多元函数微分学、向量函数的微分学、常微分方程与数值解法初步、重积分、曲线积分与格林公式、曲面积分、含参变量积分. 本书体系严谨科学、内容由浅入深, 符合学生认知规律. 每章都有提高课, 内容包括离散傅里叶变换与快速傅里叶变换以及变换能力分析和应用实例、信号多分辨分析初步以及应用、多元函数极值问题数值求解、常微分方程与数学建模、向量函数微分学以及综合应用实例等一系列问题, 初步为学生打开现代数学的窗口. 同时每章都设置了系列探索类问题, 包括理论问题、应用问题, 培养学生应用数学解决实际问题的能力. 本教材有与之配套的MOOC课程,充分利用多媒体信息技术, 将复杂数学问题直观化, 图文