本书分两部分,上部为堆垒素数论;下部为指数和的估计及其在数论中的应用。第一部分是关于堆垒素数论方面苏联维诺格拉陀夫院士的研究方法和作者自己的研究方法的总结性论著.在这部分中给予维诺格拉陀夫院士的中值定理以显著的中心地位,并且改进了它.作者把华林问题与哥德巴赫问题的研究方法结合起来,井把华林问题一方面推广到每一加数是整系数多项式的情形,一方面限制变数仅取素数值.作者把塔锐问题也加上了变数只取素数值的限制,同时又讨论到更广的素未知数的不定方程组。下部主要讨论了指数和的各种估计方法及其应用,特别讨论了这些方法对Waring问题及问题的应用.除此而外,也谈到了解析数论的其他一些问题与方法.这部分不仅综合了这几方面的结果与文献,更重要的是对其中绝大部分重要的结果都给出了较完各的提纲性的证明。
本书是作者在为研究生开设代数拓扑学课程的讲义基础上整理而成的,全书共九章,第零章为预备知识,前三章介绍单纯同调论,第四章为当前流行的范畴论,从第五章开始介绍在一般空间上的连续同调论。后四章是CW空间、一般系数的同调论、乘积空间的同调论和Steenrod运算。本书论述严谨,深入浅出,作者力图从较直观的几何概念出发引出极为抽象的概念。
该教材内容主要涵盖材料的基础知识介绍、原子的结构与键合、金属和陶瓷的结构、高分子结构、固体缺陷、扩散、力学性能、变形和强化机制、失效、相图、相变、电性能、材料类型及其应用、材料的合成制备与加工、复合材料、材料的腐蚀与降解、热性能、磁性能、光学性能、材料科学与工程所涉及的经济,环境和社会问题 。 本书内容全面、先进。不仅是材料学科的必修课教材,也是应用物理、化学工业、信息工程、生物工程、电子电工、车辆工程、航空航天等专业的必要补充教材。也可为专业人员提供参考价值。
该教材内容主要涵盖材料的基础知识介绍、原子的结构与键合、金属和陶瓷的结构、高分子结构、固体缺陷、扩散、力学性能、变形和强化机制、失效、相图、相变、电性能、材料类型及其应用、材料的合成制备与加工、复合材料、材料的腐蚀与降解、热性能、磁性能、光学性能、材料科学与工程所涉及的经济,环境和社会问题 。 本书内容全面、先进。不仅是材料学科的必修课教材,也是应用物理、化学工业、信息工程、生物工程、电子电工、车辆工程、航空航天等专业的必要补充教材。也可为专业人员提供参考价值。
本书是配合同济应用数学系主编的《高等数学》(第四、五版)的辅导,全书将高等数学中的基本知识分为26个专题,每个专题从概念、定理、问题,典型例题与解题方法,常见错误剖析和练习题等四个方面对所介绍的知识进行深化、归纳总结。书中对基本概念与定理作了进一步的诠释,并回答教学中的一些概念性问题。对精选的各类问题的解法与证法加以总结,同时,阐明各类解题方法适用题型所具有的特征。针对读者容易忽视或混淆的问题及易犯的概念性与解题错误进行剖析。练习题分为A和B两类,A类为基础题,B类为提高,书末有答案与提示。本书可作为高等院校师生的教学参考书,还可作为硕士研究生入学考试的复习资料和自学考试有关人员的复习课本。
国际大学生数学竞赛是国际上较高层次的大学生参加的别数学竞赛。本书汇集了从第1届至17届国际大学生数学竞赛的试题及其解答.本书适合于大学数学系师生及相关专业研究人员和数学爱好者使用。
《高等数学疑难问题选讲》是“高等学校大学数学教学研究与发展中心”立项资助的教学研究项目成果。《高等数学疑难问题选讲》编写的主要目的是为了帮助从事“高等数学”教学的青年教师更深刻地领会教学内容,提高教学水平和教学能力。全书分章按问题编排,各问题之间相对独立,便于读者查阅。
橄榄又称白榄、青果、黄榄,原产中国南部地区,是我国南方的热带南亚特产水果和药用植物。橄榄在我国已有2000多年的栽培历史,以福建、广东种植最多,广西、中国次之,海南、四川、重庆、云南、贵州、浙江等地也有一定栽培面积。 ?? ?? ??橄榄味酸涩,香甜之味久嚼方得,所以民俗取其苦尽甘来的寓意,把它当作吉祥如意的象征;橄榄气味特别清香,能增进食欲,舒畅神志,为茶余酒后佳品。除鲜食外,还可以开发出多种蜜饯、果汁等食品。橄榄属于卫生部批准的既是食品又是药物的69种物品之一,药用价值很高。近年的研究成果表明:橄榄富含钙和有机铬,在水果中名列前茅;橄榄性味甘酸涩平,有解毒生津,清肺利咽之功效,还有减肥降脂的作用,其根、果、仁、核、叶、花粉等均可入药。因此,橄榄综合开发利用价值很高。 ??本书主要介绍了橄榄生
本书系统地介绍分数阶微积分学与分数阶控制领域的理论知识与数值计算方法。特别地,作者提出并实现一整套高精度的分数阶微积分学的数值计算方法;提出线性、非线性分数阶微分方程的通用数值解法和基于框图的通用仿真框架,为解决分数阶控制系统的仿真问题奠定了基础;开发面向对象的分数阶系统控制的MATLAB工具箱,可以用于多变量分数阶系统的建模、分析与控制器设计的全过程。本书所有知识点均配有高质量的MATLAB代码,有助于读者更好地理解知识点的内涵,更重要地,可以利用代码实践并创造性地解决相关问题。
。
《基于非线性薛定谔方程的畸形波理论及其应用》在讲述非线性薛定谔方程的各类物理背景的基础上,对其基本解,特别是有理形式表示的畸形波解的求解方法进行了阐述,包括直接方法、双线性方法、达布变换法和朗斯基行列式方法等,分别重点给出在流体力学、非线性光学、等离子体物理、玻色一爱因斯坦凝聚等领域中的应用,详细讨论了这些系统中的畸形波的控制问题,并展示了丰富的动力学行为,同时分别给出了高维非线性薛定谔方程的线畸形波和耦合非线性薛定谔方程矢量畸形波的求解及其应用,这些成果也包括了作者及其合作者得到的一些研究成果,期望《基于非线性薛定谔方程的畸形波理论及其应用》可以为数学物理、凝聚态物理、流体动力学、等离子体物理、非线性光学等专业的科研工作者和研究生提供重要的富有启发性的参考。在阅读《基于非
本书给出适当的理论分析,如(1)给出的Euler-Lagrange方程,它是N-S方程和一个4阶椭圆型方程的耦合系统;(2)证明相应的无限维控制系统解的存在性,可动边界N-S方程解的存在性及解对边界几何的连续依赖性;(3)N-S方程对边界形状的Gateaux导数所满足的方程以及存在性的证明。本书另一个内容是给出耦合系统数值解方法和三维旋转N-S方程维数分裂方法.这个方法的特点是用二维流形分割区域,在每个子区域(流层)上建立局部半测地坐标系,将N-S方程分解为膜算子(流形切空间上)和弯曲算子(流形的法线方向算子),然后将弯曲算子用欧氏中心差分逼近,得到二维流形上的2D-3CN-S方程,用一系列二