本书对高等数学的大部分内容作了简明的、介绍性的论述,全书共分十二章,其中八章分别讨论数论、代数、几何及线性代数、极限、连续性及拓扑学、微分、积分、级数和概率、每章都从基本概念、基本定理开始,一直论述到当前的进展,并附有该学科的历史概况及有关的著名数学家的生平简介,重要参考书。另外还有三章分别讨论数学模型与现实,数学的应用及17世纪的数学史,最后一章讨论数学的社会学、数学的心理学及数学教学。《BR》 本书内容丰富,论述严谨,可使读者了解数学的全貌、现代数学的特点及数学的应用并可提高读者对数学的兴趣。《BR》 本书由胡作玄同志翻译,张燮同志初校,沈永欢同志复校。
每年都会有来自全球各地学习数学的学生和教师聚集在 奇妙的数学 暑期课程,有意练一直是课程的主要内容.本书共分为三部分,第一部分为题目,介绍了2006年至2014年 奇解题训学 暑期课程的人学测试试题;第二部分给出了所有试题的完整或者加强的解答,许多问题都给出的数种解答:第三部分为术语表,详细地介绍了本书以到的的方式将这有些问题及复杂的数学思想,但所有的问题都可以用初等的技术来解决,当然,需要以巧妙的方式将这些技术结合起来.本书可作为准备参加数学竞赛的初高中生以及想扩大数学视野的读者的参考资料.
《高等数学典型例题分析》是以同济版《高等数学》(第七版)为蓝本编写的学习辅导书,全书共分11章,内容包括:一元函数与极限、导数与微分、微分中值定理与导数的应用、不定积分、定积分及其应用、常微分方程及其应用、向量代数空间解析几何、多元函数微分学及其应用、重积分、曲线积分与曲面积分、无穷级数,每章内容包括内容提要、例题、思考题三部分,内容提要给出相关的概念、定理和公式。例题注重对解题思想、解题方法的分析和总结,培养学生的数学思维,思考题帮助读者巩固、拓展所学数学知识。 《高等数学典型例题分析》例题典型,覆盖面广,解题方法清晰完整,解题思路分析透彻,归纳总结全面,《高等数学典型例题分析》可作为高等学校大学数学课程的教学参考书、习题课教材,以及考研复习用书,
“算两次”,是一种重要的数学方法,也称做富比尼原理。用两种方法计算同一个量,是一种行之有效的基本方法。 这本小册子,通过形形色色的例题来介绍“算两次”,读者一定能够举一反三,找到 多的应用。
本书按照《高等数学》 (同济七版)章节顺序,并 参照 制订的 考研数 学考试大纲 和中国数学会 制定的 中国大学生数学竞 赛大纲 编写,包括十二个 章节的同步检测以及上册( 前七章)与下册(后五章) 的综合检测,共计十四套试 卷,每套试卷又含ABC三份 检测试卷,其中,A卷是基 本内容难度,夯实基础;B 卷是学校考试难度,强化训 练;C卷是考研竞赛难度, 拓展提升,对于试卷中的每 一道题目,均有配有详细的 解答过程。 本书内容丰富、题型多 样、解析专业,可作为理工 科大学一年级学生学习高等 数学的配套资料,同时还可 以作为准备复习考研和参加 大学数学竞赛的参考书及其 相关教师的参考资料。
朱开永、王升瑞主编的《高等数学(下)》是根据高等工程教育的办学定位和工程技术型人才培养的目标,参考“高等院校高等数学教学大纲与基本要求”,结合笔者多年教学实践经验编写而成。 本书分为上、下两册,此为下册,内容包含了常微分方程、无穷级数、向量代数与空间解析几何、多元函数微分学、重积分、曲线积分与曲面积分。每一节和每一章后的习题和自测题书中配有答案。本书附有多媒体课件。本书在编写过程中着重把握“以应用为主,够用为度”,注意强调学生基本分析问题和运算能力的培养,取材少而精,文字叙述通俗易懂,论述确切;条理清晰,循序渐进;重点突出、难点分散;例题较多,典型性强;深广度合适,非常便于教与学。 本书可作为高等院校(独立学院、民办高校、网络学院)理工科专业应用型人才培养的教材,也可以
《赵老师讲平面几何(下)辅助线及通用的方法》是讲平面几何解题思路及其训练的系列丛书的下册,重点讲解平面几何中比较重要的辅助线及通用的几何解题方法。老师们通过学习此书可以掌握平面几何中难度技巧较高的方法,并能辅导学生举一反三、触类旁通,使学生掌握一整套行之有效的学习几何和解几何题的高层次方法。可以说,此书为学习平面几何提供了一把金钥匙,是全国广大中学生(特别是初中生)及中学数学教师的良师益友。
《高等数学(下册)/新核心理工基础教材》吸取其他高等数学教材精华部分,依照少学时高等数学教学的知识结构要求及特点,围绕教学大纲内容,强调教材的层次性、针对性,便于少学时高等数学教学,也方便学生自学,各章、节知识点后配有相应习题,并附习题答案。 《高等数学(下册)/新核心理工基础教材》分上、下两册。下册包括多元函数微积分,重积分,无穷级数和微分方程四部分内容。 《高等数学(下册)/新核心理工基础教材》可作为少学时高等数学的教学用书,也可供广大读者进行自学。
本书是为配合清华大学电子学教研组编,童诗白、华成英原著,华成英主编的《模拟电子技术基础(第六版)》的使用而编写的,对教材中的每一章均按“内容概要”“难点释疑”“例题精解”“习题解答”四个部分编写,提炼重点,解决难点,示范性地分析和解决问题。本书既可作为教师手册,又可作为学生的辅导教材,还可作为自学者的参考书。
本书共分十二章,每章又分若干节,在章节设置上和同济大学六版高等数学教材基本一致,涉及的内容涵盖了高等数学的全部主题。在本书中每章除最后一节外每节包括两大部分内容:知识要点:简要对每节涉及的基本概念
博弈论是在西方哲学、经济学、心理学、信息论的基础上发展创新出来的思维利器。我们身边无时无刻不存在着博弈,生活中常见的一些问题都能够运用博弈论来寻找*的解决之道,用博弈智慧来指导生活决策。 《从零开始读懂博弈论》通过图文结合的方式介绍博弈论的基本思想及运用,通俗易懂,饶有趣味,并寻求用博弈的思维智慧来指导生活和工作。读者可以在生活中常见的事例中轻松领会博弈思维的精髓,获取开启人生智慧的金钥匙。
邱法玉、宋金丽主编的《高等数学学习辅导与同 步练习(国家骨干高职院校基础课系列教材)》根据教 育部制定的《高职高专教育高等数学课程教学基本要 求》,以国家骨干高职高专办学方向和培养目标为指 导,兼顾各专业对高等数学知识和技能的基本需求编 写而成。 本书既从宏观上对各章知识点、重难点、内在联 系进行系统的梳理,又从微观上对重点题型、解法、 注意事项进行分门别类的总结与例题示范,有利于学 生对知识的掌握以及应用能力的提高。 本书与国家骨干高职院校系列教材《高等数学》 配套使用,一方面能做到对教材知识点的呼应、总结 与强化,另一方面题目类型全、覆盖面广,题目从基 本到综合,由易到难、循序渐进,充分注重基础知识 的巩固、基本方法和自学能力、解题能力、应用能力 以及分析问题、解决问题能力的训练
随着数学的不断发展,不定方程的重要性日益显著。现代数学的重要分支,如代数数论,代数几何,表示理论……都在这里交汇。不定方程几乎成为一块试金石,用以检验新的数学理论和新的数学方法。 本书是为丰富中学生的数学知识而写的小册子。 为便于学生学习,尽量使用初等方法来讨论在初等数学(特别是各级数学竞赛)中经常遇到的不定方程。学生阅读不定方程所需的一些整数知识,在本书的附录中也作了阐述,可供参考。
本书依据 大学生数学竞赛大纲与江苏省普通高等学校高等数学竞赛大纲,并参照 制订的考研数学考试大纲编写而成,内容分为 限与连续、一元函数微分学、一元函数积分学、多元函数微分学、多元函数积分学、空间解析几何、级数、微分方程等八个专题,每个专题含“基本概念与内容提要”“竞赛题与精选题解析”与“练习题”三个部分。其中,竞赛题选自 大学生数学竞赛试题(非数学专业组), 硕士研究生入学考试试题,江苏省、北京市、浙江省、广东省等省市大学生数学竞赛试题,南京大学、东南大学、清华大学等高校高等数学竞赛试题,莫斯科大学等国外高校大学生数学竞赛试题.;另外,从近几年 硕士研究生入学考试试题中也挑选了一些“好题”,作为本书的有力补充。这些题目中既含基本题,又含很多构思巧妙、解题技巧性强,具有较高水平和较大难
本书为《高等数学(同济 七版)》(上册)的配套辅导书,本书共分为7章,每章包含知识结构图、考研大纲要求、考研试卷分值统计、本章内容概述、题型与方法、考研真题解析、教材课后习题详解、目标自测题与答案共七个部分。本书主要特点:例题种类详细,知识点的结构层次清楚,内容充实,方法性强以及与考研联系紧密。本书是针对使用该教材的教师与学生的同步辅导书,也适合作为考研数学复习的参考书。