本书共分五个部分,十四个章节,是论述群、群表示论、李群、李 代数及其应用的一本入门读物. 第一部分详述了集合,集合之间的映射,以及群的一些基本理论,如等价与分类、拉格朗日定理,以及重新排列定理等. 第二部分具体讨论了一些群,如点群、对称群、群 GL ( n , K )及 其子群,着重论述了群 O ( 3)及其子群,为了运用,又用群论方法 证明了只有五种正多面体. 第三部分,阐明了由数系扩张形成的环、域、代数等代数系,并详细地讨论了向量空间中的一系列重要空间,如商空间、对偶空间、欧几里得空间和酉空间. 第四部分, 全面且系统地阐述了有限群的表示论,并研究了四元数与三维空间的转动.从时空的均匀性和对称性得出惯性系之间的洛伦兹变换,以及将对称性与守恒量联系起来的诺特定理. 第五部分,定义了李群,引出李代数,并讨论了它们在角动量理论 及基本粒子模型中
偏微分方程是数学学科的一个分支,它和其他数学分支均有深刻的联系,而且在自然科学和工程技术中有广泛的应用。本书主要讲述广义函数与Sobolev空间、偏微分方程的一般理论、椭圆型方程的边值问题、双曲型方程或抛物型方程的初值问题与初边值问题、能量方法、半群方法等内容。以此为提高读者的整体数学素质提供合适的材料,也为部分读者进一步学习与研究偏微分方程理论做准备。
本书针对大学高等数学下学期的课程内容——向量代数与空间解析几何、多元函数微分法及其应用、重积分、曲线积分、曲面积分以及无穷级数——精心设计了750道经典与创新题目,并给出了相应的解题思路。书中题型规划合理,覆盖题型全面,解题思路清晰,非常适合想要打牢高等数学基础,以及准备参加专升本、研究生考试的学生使用。
本书作为国家精品教材同济大学数学系《高等数学》的配套用书,书中精选了大量源自各高校的各种考试试题,具有集中要点,与教学同步;多级筛选,突出重点等特点。本书可作为本科院校学生学习高等数学课程的参考用书。
几何是数学学习的基础之一,借助几何学,我们能搭建房屋、丈量土地、观测星空,还能设计滑梯、装饰地板……连一副小小的七巧板都能催生出众多数学成果。本书从建筑、测量、图形游戏等角度讲述了有趣的几何小故事,不仅涉及直线形、圆、非圆曲线、立体几何等基础几何学知识,而且加入了图论、拓扑、组合几何、非欧几何等主题,“扩大”了美妙的几何世界。本书阐释了几何学知识,同时介绍了古今中外关于几何的逸闻趣事,展现了图与形的自然之美。本书尤其适合小学高年级学生和中学生阅读。
本书分别从中国古代数学思想、益智游戏、企业管理、计算机科学、博弈论等角度出发,介绍了线性代数和矩阵理论中的相关概念和理论在上述领域的应用。通过阅读本书,读者对线性代数在实际问题中的应用会有更加直观的了解,有助于激发读者对线性代数的学习兴趣和学习热情。本书分为8章,涵盖的主要内容有线性方程组的计算、益智数字游戏中的矩阵、经营管理中的矩阵、矩阵与图片美化、计算机绘画中的矩阵、矩阵与密码设计、互联网中的矩阵、矩阵与博弈论。本书内容通俗易懂、生动有趣,特别适合中学生、大学生及各年龄层的数学爱好者作为线性代数入门读物使用。另外,本书也适合作为各类大中专院校的教学参考书使用。
本书是一本趣味横生地讲述形式逻辑主题的故事书,融合了众多读者喜闻乐见的逻辑谜题,以一种独特的方式来普及数理逻从 章到第十六章有大量的趣味谜题供读者思考,包括说谎和讲真话的逻辑、沉默的骑士和无赖等,循着本书生动活泼的语言,读者可以由浅入深地了解命题的真假和自指、推理的有效性、集合论语义学、无穷和保有效性以及形式系统的性质等逻辑学基础知识。同时,本书还提供了丰富的练习及答案,这些练习并不拘泥于符号的正确运用,而是重在让读者理解证明的构造过程。本书既可以作为普通读者走入逻辑学大门的科普书,也可以作为大学本科和研究生的补充教材。
本书依据 大学生数学竞赛大纲与江苏省普通高等学校高等数学竞赛大纲,并参照 制订的考研数学考试大纲编写而成,内容分为 限与连续、一元函数微分学、一元函数积分学、多元函数微分学、多元函数积分学、空间解析几何、级数、微分方程等八个专题,每个专题含“基本概念与内容提要”“竞赛题与精选题解析”与“练习题”三个部分。其中,竞赛题选自 大学生数学竞赛试题(非数学专业组), 硕士研究生入学考试试题,江苏省、北京市、浙江省、广东省等省市大学生数学竞赛试题,南京大学、东南大学、清华大学等高校高等数学竞赛试题,莫斯科大学等国外高校大学生数学竞赛试题.;另外,从近几年 硕士研究生入学考试试题中也挑选了一些“好题”,作为本书的有力补充。这些题目中既含基本题,又含很多构思巧妙、解题技巧性强,具有较高水平和较大难
本书介绍代数不等式证明中的有效方法,兼顾经典方法与作者的心得体会,侧重命题与解题的思想。全书共11章,选取200多个国内外代数不等式的典型问题,配有不同的证明方法,以解析各类解题方法,并对部分问题加以拓展。本书可作为数学奥林匹克训练的参考教材,供高中及以上文化程度的学生、教师使用,也可供不等式爱好者和从事初等不等式研究的相关专业人员阅读参考。
本书对计算机科学方面的数理逻辑进行了综合介绍,涵盖命题逻辑、谓词逻辑、模态逻辑与代理、二叉判定图、模型检测和程序验证等内容。本书主要讨论有关软硬件规范和验证这一主题,反映了计算机科学中数理逻辑的新发展和实际需要。第2版新增了可满足性算法、Lowenheim-Skolem定理等,并介绍了Alloy语言和NuSMV工具等内容。 本书适宜作为高等院校计算机及相关专业的数理逻辑/形式化方法课程的教材,也可供相关研究人员和专业人士参考。
国际大学生数学竞赛是国际上较高层次的大学生参加的高级别数学竞赛。本书汇集了从第1届至17届国际大学生数学竞赛的试题及其解答. 本书适合于大学数学系师生及相关专业研究人员和数学爱好者使用。
本书对计算机科学方面的数理逻辑进行了综合介绍,涵盖命题逻辑、谓词逻辑、模态逻辑与代理、二叉判定图、模型检测和程序验证等内容。本书主要讨论有关软硬件规范和验证这一主题,反映了计算机科学中数理逻辑的新发展和实际需要。第2版新增了可满足性算法、Lowenheim-Skolem定理等,并介绍了Alloy语言和NuSMV工具等内容。 本书适宜作为高等院校计算机及相关专业的数理逻辑/形式化方法课程的教材,也可供相关研究人员和专业人士参考。
自上世纪20~30年其出现开始,群的上同调就成为了代数与拓扑学的交叉领域,并且促成了重要的新数学研究领域的创建,诸如同调代数和代数K-理论。该书是本综合论述有限群的上同调的书。书中介绍了最重要也是最有用的代数和拓扑方法,研究了有限群的上同调与同伦论、表示论和群作用之间的关系。书中的各理论与实例的结合,连同各种重要的经典群(对称群、交错群、李型极限群以及各种散在单群)的上同调的计算方法
本书是作者多年来在大学生数学竞赛辅导和考研辅导经验的基础上编写而成的.全书共分为13 章,每章包括4 个模块,即知识要点、典型例题分析、深化训练以及深化训练详解.本书编写的目的主要有两个:一是帮助工科类、经管类本科生备考全国大学生数学竞赛,使学生能够在短时间内迅速掌握各种解题方法和技巧,提升学生综合分析问题、解决问题的能力;二是为了满足工科类、经管类本科生考研的需要. 在例题和习题选编方面,精选了部分有代表性的数学竞赛真题和考研真题,同时注重例题、习题的创新,按题型分类进行合理编排,使学生能够尽快地适应考研题型,从容应对考试.本书既可以作为普通高等院校工科类、经管类本科生参加全国大学生数学竞赛的辅导用书,也可以作为工科类、经管类本科生考研深化训练用书.
该书介绍了一些的数论问题,适合不同层次的读者阅读。一方面,作者不需要更宽泛的数学知识;事实上,只要在数学方面接受过正规的学校教育就足够了。另一方面,作者探讨了一些真正的数学兴趣问题,并以更易读懂的方式讲解,因此,数学知识丰富的作者在阅读此书时会感到非常愉悦和有益。该书中几个值得注意的点:数学归纳法的详细讲述和通过该法证明的独特的因子分解定理。