全书共分三部分:部分皇冠上的明珠——哥德巴赫猜想简介与综述;第二部分中国解析数论群英谱;第三部分数论英雄——陈景润。 本书叙述了哥德巴赫猜想从产生到陈景润解决“1 2”问题的历史进程,突出记叙了陈景润在当时恶劣的生活环境中解决数学难题的勇气、智慧和毅力,他所取得的成绩,他所赢得的殊荣,为千千万万的知识分子树起了一面不凋的旗帜,召唤着青少年奋发向前。
吴悦辰编著的《三线坐标与三角形特征点》主要包括十章:三线坐标和重心坐标,三角形的特征点(一)——一些经典的几何特征点,三角形的特征点(二)——一些与透视相关的几何特征点,三角形的特征点(三)——共轭与变换,三角形的特征点(四)一一其他几何特征点,形形色色的直线,形形色色的三角形,形形色色的圆,三角形的二次曲线,三角形的三次曲线。本书适合数学爱好者参考阅读。
本书是在多次讲授“组合学与图论”课程的讲义基础上修改而成的,许多教科书将组合学和图论分开写成两本,考虑到大多数专业的教学学时的实际情况,本书将组合学和图论合写成一本,以方便教与学,本书对基本概念的叙述力求深入浅出,清晰准确;对定理的证明力求简明易懂而又严谨;对例题的选择力求典型、充实,本书的重点是使学生理解应用组合学和图论的知识去分析和处理问题的思想和方法,并通过丰富多样的例题使学生更好地掌握课程的基本内容,注重培养学生分析和解决实际问题的能力,为了便于学生自学,对书中配置的难易程度不同的三百多道习题,给出答案或提示或简明的解答(证明)过程。本书可作为应用数学系、计算机系的本科生以及相关专业的研究生“组合学与图论”课程的教科书,也可作为“离散数学”课程的参考书。
Thisvolumeisapletelynewversionofthebookunderthesametitle,whichappearedin1981asVolume9intheseries"ProgressinMathematics,"andwhichhasbeenoutofprintforsometime.Thatbookhaditsorigininnotes(takenbyHassanAzad)fromacourseonthetheoryofLinearalgebraicgroups,givenattheUniversityofNotreDameinthefallof1978.Theaimofthebookwastopresentthetheoryoflinearalgebraicgroupsoveranalgebraicallyclosedfield,includingthebasicresultsonreductivegroups.Adistinguishingfeaturewasaself-containedtreatmentoftheprerequisitesfromalgebraicgeometryandmutativealgebra.
本书是Springer《数学研究生教材》第73卷,初版于1974年,30年来一直是美国及世界各国大学数学系采用的研究生代数教本。此书Springer已重印12次,由此证明这是一部经典的研究生教材。全书取材适中,论述清晰,自成系统.本书在一些问题的处理上有其独到之处,如Sylow定理的证明、伽罗瓦理论的处理、可分域的扩张、环的结构理论等。书中有大量的练习和精心挑选的例子。 目次:群和群的结构;环;模;域和伽罗瓦理论;域的结构;线性代数;交换环和模;环的结构;范畴论。 读者对象:数学专业研究生和科研人员.
The "abstract,""formal"or"axiomatic"direction,to which the fresh impetus in algebra is euc ,haw led ,haw led to a numbe of new formulations of ideas,insight into new interrelations,and far-reaching results results,especially in group theory ,field theory,valuation theory, ideal theory,and the theory of hyperplex numbers.The principal objective of this reason ,genreral concepts and methods stand in the foregorund ,particular results which properly belong to classical algebra must also be give appropriate consideration within the framrwork of the modern development.
本书是数学发展史上的一个里程碑,在很长一段时间,这是本讲述拓扑代数的教程。这本书堪称是一部同调代数经典,1956年初版,至今已有七次重印出版。这本书曾在纯代数领域引起过不小的轰动,作者企图将这个领域统一起来,并且为这个领域构建一个完整的框架。书中讲述的同调理论包含了群、李代数和结合代数上同调结构,大量的结果都包括在一般框架之中,但每个结果都有不同的讲述方式,并且每个理论的特殊性质都给出了具体的讲述。本书以环上的模作为出发点,基本计算有二模张量积,以及一个模到其他模的同态群。函子和导出函子也是自然而然的进行了讲述。目次:环和模;加性函数;卫星;同调;导出函子;u和hom的导出函子;积分域;增广环;结合代数;补充代数;乘积;有限群;李代数;扩张;谱序列;谱序列应用;超拓扑。 读者报对象
代数几何是近代以来发展迅速的一门数学的分支学科,与其他领域的许多学科有着紧密的联系,也是高等院校数学专业研究生阶段所开设的一门非常重要的基础课程。 本书是时下为数不多的代数几何的经典教材之一,已被众多学校用做教学参考书。与本书相配套的教材《The Red Book of Varieties and Schemes》和《Algebraic Geometry GTM52》也已影印出版。本书是由作者多年来在各处讲授代数几何课的笔记,经多次修订后整理成册。全书的前一部分主要介绍了复射影簇,后一部分则重点探讨了概型,内容包括概型的凝聚层的上同调与应用。 本书适用于数学专业的二年级研究生及需要相关知识的其他领域的专家学者。