介绍抽象代数学的基础知识,内容有:群论、环论、域论以及域上的伽罗华理论,本书特点:内容丰富、处理简洁。
本书内容包括行列式、矩阵、n维向量与线性方程组、线性空间、矩阵的对角化、实二次型和线'性变换等线'性代数的基本知识以及基本线性代数问题的计算机实现,通过将线性代数的基本知识与计算机相结合使学生能利用数学软件解决一些简单的线性代数的实际问题。书末还给出了有关的Matlab软件的使用说明。
内容简介 近世代数是代数学的一个基础学科,讲述代数基本结构的特性.本书除系统介绍群、环和域的基础知识(包括域的有限伽罗瓦扩张理论)之外,还力图强调近世代数中的思想和方法.书中有大量习题.除主线内容之外,还增加一些附录用来开拓和深化所学内容.本书在中国科学技术大学讲授多年的讲义基础上修改写成,可作为高等学校数学系基础课教材,也可供数学工作者和通信、计算机科学等领域的工程技术人员参考.
本书采用学生易于接受的方式科学、系统地介绍线性代数的基本内容, 强调适用性和通用性, 兼顾先进性.本书起点低、坡度适中、简洁明了、适于自习. 全书涵盖考研的数学考试大纲有关线性代数的所有内容. 每章配有 A 型和 B 型习题, 书后附有习题参考答案、基于软件 MATLAB 的线性 代数实验及 2006~2015 年硕士研究生入学考试部分线性代数试题.本书不在理论的细枝末节上过分追求, 注重线性代数的思想、理论原理、使用条件、使用方法和结论分析方法的论述,有利于培养学生的综合素质和能力.
?定位为普通大学信息与计算科学专业课程教材,入门起点低,只涉及基本的数论、抽象代数知识。?作为应用数学的一个重要且实用的分支,代数编码与密码的入门切入点是让学生掌握一些和当前计算机技术水平相适应的、具体的、 较好的纠错码体制和现代密码体制,以便在工作中能够使用。?全书共分三部分。部分是抽象代数基础,第四节和第五节讲解有限域和有限域上的多项式环,这是代数编码与密码的基础。 第二部分介绍纠错码理论,引进线性码、循环码、 BCH 码 和 RS 码。 第三部分介绍代数密码学:讲公钥密码,即介绍 RSA 密码体制和 ElGamal 密码体制;讲分组密码,主要介绍了高级加密标准 AES 和 IDEA 密码体制;第八章讲密钥管理;第九章讲数字签名和认证系统。
胡里克编著的《初等代数几何(第2版)》是代数几何的一个导引,其目的是给出代数几何的基本概念和方法,并用大量例题对它们进行解释,这可以让读者在一些补充资料的帮助下独立进行工作。《初等代数几何(第2版)》特意保持使用初等语言。书中一方面展开一般理论,另一方面则处理具体的例题和应用,并着重于这两者之间的相互作用和联系。 《初等代数几何(第2版)》适合大学数学系的本科生阅读参考,他们已经学过了代数和函数论的基础课程。《初等代数几何(第2版)》的新版做了重大修改,增添了许多新图和习题,所有习题都有解题提示。
本书在第一版的基础上增加了与代数几何和组合数学相交叉的内容。 本书在本科抽象代数课程的基础上讲述了交换代数的基本的也是重要的Hilbert基定理、 Hilbert零点定理、理想的准素分解、相伴素理想、维数、重复度、正则环和正规环等内容.同时,对应地讨论了代数集的基本性质、代数集的分解和维数、代数簇的非奇异性和正规性等,还讨论了组合交换代数的基本内容。
用常规和母函数方法解决排列、组合、分配问题的技巧;用递推关系、容斥原理、棋盘多项式等求解计数问题的方法与技巧;图形可变换情况下染色方案的统计方法;存在性问题的证明方法与技巧。其中含实用例题300多个。
“线性代数”是大学教学教育的重要基础课,也是大多数专业研究生入学考试的必考科目。 本书分为三大部分:基础篇、提高篇和应试篇。基础篇包括:复习引导、基本概念、基本题型;提高篇包括:考点归纳、考点解读、命题趋势、难点剖析、点击考点+方法归纳;应试篇包括:线性代数复习点睛、2011年研究生入学试题详解、三套模拟考试题及部分答案。 本书的特色是新颖、全面、精准、实用、高效,可作为各类大中专在校学生的参考书,考研学子的备考复习书,高校教师的习题课参考书,考研辅导人员的考案参考书。 一级分类:教材 二级分类:本科教材 三级分类:公共课程
本书系统介绍了线性代数与解析几何的基本理论和方法,主要内容包括行列式、矩阵、空问解析几何与向量运算、n维向量、线性方程组、矩阵相似对角化、二次型、MATLAB简述与应用。本书注重代数与几何的有机结合,强调矩阵初等变换的作用,将数学建模思想融人教材,注重应用背景及实例的介绍,并精选了大量的例题和习题,便于学生自学。
本书根据安徽省应用型本科高校联盟对应用型本科教育教学基础教材的编写要求编写,全书贯穿着 问题驱动 案例教学 注重数学的思想方法、淡化严谨的数学理论 的应用型本科公共数学课程的教学理念,力求内容陈述自然直观,语言叙述通俗易懂。本书以 初等变换 为主要工具,介绍了矩阵、线性方程组、向量空间、行列式、矩阵的等价、相似与合同等,结合应用实例,重点揭示这些数学内容中所蕴含的数学思想方法。再版增加了教学上的新的理念和内容,并对习题进行精化,多数来自于实际应用的问题。本书适合应用型本科高校理工、经管类专业选作教材使用。
本书是根据高等教育本科线性代数课程的教学基本要求编写而成的.主要内容有:n阶行列式、矩阵与向量、矩阵的运算、线性方程组、相似矩阵与二次型、线性空间与线性变换、矩阵理论与方法的应用. 书后附有部分习题参考答案. 书末的附录中选编了2010~2015年全国硕士研究生入学考试线性代数的部分试题.
作为普通高等教育“十一五”***规划教材,本书是在多年教学实践的基础上,为适应教学改革新的要求而编写的。主要内容有行列式和线性方程组的求解、矩阵、几何空间、n维向量、特征值与特征向量、二次型与二次曲面。每章的最后一节均为“用MATLAB解题”,并附有“历史小贴士”。各章的习题分(A),(B),(C)三类。习题(A)供学生自测之用,习题(B)可以作为课后作业,习题(C)包含应用题和实验题两种类型的习题。这样设置习题是希望借此能拓展学生知识背景,培养应用意识,同时也能兼顾不同学习层次的学生的需要,便于选用。与本书配套的手机应用还为读者提供了丰富的多媒体资源,内容包括有关知识的历史简介和一些难点的讲解视频以及二十个经典的实际应用案例。
本书根据作者在复旦大学多年教学的讲义修改而成,内容包括群的基本知识、环和域的基本知识、多项式和有理函数、向量空间、群论中一些进一步的知识、域的扩张、有限域、Galois理论初步。本书配有相当数量的习题,难度变化大,适应多层次教学的需要。书后附有习题解答和提示,供读者参考。
内容介绍 暂时没有目录
本书是教材《线性代数(第五版)》的配套用书,旨在帮助学生自学以及方便教材教学,本书的章节安排与教材相同,内容主要包括各节的学习要点、学习疑难点、典型例题解析及教材习题的解答。
本书是理工科、技术学科、经济与管理等类学生学习《线性代数》课程的学习辅导书。全书共六章:矩阵与行列式,线性方程组,线性空间与线性变换、特征值与特征向量、Euclid空间与酉空间、二次型。本书重视基础知识的学习与基本技能的训练,强调教学内容与习题解析的同步衔接;注重整合知识,科学地指导学生进行解题的训练;书中还选择了许多综合性与灵活性问题,同时也对一些结论进行引申,引导学生独立思考和深入训练;在例题讲解中,适时穿插一些评注,起到画龙点睛的作用。本书还对全国和一些院校的硕士研究生入学考试试题适当地进行选择,有机地穿插在例题和习题之中。本书还在每小节之后都配置了一定量的习题,并附有答案或提示。 本书的深度和广度能适应大多数专业的线性代数知识的学习需要,可作为高等学校理科、工科、技术
全书共分七章,分别为行列式、矩阵、线性方程组、矩阵的特征值、特征向量和方阵的对角化、二次型、线性空间与线性变换、数学实验。各章均配有一定数量的习题,并选编了多年来数学(一)考研试题。本书可作为高等学校教材,也可供考研复习使用。
《线性代数》内容包括行列式、矩阵、线性方程组、矩阵的特征值与特征向量、二次型等基本理论与方法. 例题配置注重层次性和典型性, 按章节配有相当数量的习题, 各章还精心设置了较为丰富、有助于考研等需求的复习题,书末附有部分习题参考解答. 此外, 还附有线性代数应用实例与MATLAB在代数计算中的用法供学生进一步参考学习. 在概念的引入和内容的叙述等方面, 《线性代数》力求做到由浅入深、条理清晰、通俗易懂、易教易学.