《抽象代数习题精选精解》章是抽象代数的基本概念。第二章是群论,内容包括循环群、置换群、不变子群、商群、群同态、群在集合上的作用、Sylow定理、群的直积等。第三章是环和域,内容包括整环、除环、理想、商环、环同态、素理想与极大理想等。第四章是整环的因子分解。第五章是域,包括素域、单扩域、代数扩域、有限域等。 我们在《抽象代数习题精选精解》各节的部分给出了相关内容的定义和重要结论,这些是相关内容的重点和难点;第二部分给出了大量的习题,并将习题按照知识点分类,难易搭配,以便帮助读者更好地掌握相关知识以及更好地掌握解题技巧。我们对《抽象代数习题精选精解》的习题解答努力做到详尽,希望能够为读者学习这门课程提供帮助。
数论是研究数的性质的一门学科。《数论经典著作系列:初等数论(Ⅰ)》从科学实验的实际经验出发,分析了数论的发生、发展和应用,介绍了数论的初等方法。《数论经典著作系列:初等数论(Ⅰ)》包含整数的性质、数的进位法、一部分不定方程和一次同余式及解法四章。每章后有习题,并在书末附有全部习题解答。《数论经典著作系列:初等数论(Ⅰ)》写得深入浅出,通俗易懂,可供广大青年及科技人员阅读。
数论是研究数的性质的一门学科。《数论经典著作系列:初等数论(Ⅱ)》从科学实验的实际经验出发,分析了数论的发生、发展和应用,介绍了数论的初等方法。《数论经典著作系列:初等数论(Ⅱ)》为《初等数论(I)》的后续,介绍了剩余系、数论函数、三角和等方法。每章后有习题,并在书末附有全部习题解答。《数论经典著作系列:初等数论(Ⅱ)》写得深入浅出,通俗易懂,可供广大青年及科技人员阅读。
《高等教育“十二五”规划教材:线性代数》是为高等院校非数学专业普遍开设的“线性代数”课程编写的教材,其内容主要包括矩阵与初等变换、矩阵代数、行列式、向量间的线性关系与线性方程组、特征值与特征向量、向量的内积与正交化、二次型等。每章后都附有习题。全书理论体系完整、逻辑严密、推理简洁,适用于教学。 《高等教育“十二五”规划教材:线性代数》可作为高等院校经济管理专业以及其他一些理工专业的教材,也可作为自学的参考用书。
本书是作者结合多年的教学实践编写的.全书共分七章和两个附录,前六章内容包括行列式、矩阵、矩阵的初等变换与线性方程组、向量组的线性相关性、相似矩阵及二次型、线性空间与线性变换,其中配备了较多的典型例题和同步习题,并对典型例题给出了详细的分析、解答和评注.第7章是自测试题及解答,附录1为同济大学《线性代数》(第5版)课后习题全解,附录2为同济大学《线性代数》(第5版)课外习题详解。 本书可作为理工科院校本科各专业学生的线性代数课程学习指导书或考研参考书,也可以作为相关课程教学人员的教学参考资料。
本书的编写按两条主线展开,一部分按中学知识板块来组织教材内容,主要有方程模型、函数模型、不等式模型、数列模型、几何模型、简单的线性规划模型、计数与初等概率模型等;另一部分按数学建模的常见方法编成两章,其中一章是图论模型,另一章包括数据拟合法、近似计算法、优选法、统筹法、聚类分析法、模糊分析法、模糊评判法及层次分析法等数学建模方法。在每一章中,除了列举一些典型的建模案例外,还配备了一些思考与练习题,供读者选用;书后附有这些问题的提示与参考答案。
本书是在《线性代数(第二版)》的基础上,广泛听取校内外教师的意见后修订而成的。作者针对工科类院校的特点,从教学实际出发,注重联系理工科专业实际,注重理论的严谨性,本着重概念、重方法、重应用的精神,以矩阵为主线,突出矩阵的运算、化简和数字特征,突出用矩阵方法研究线性方程组、二次型和经济模型,力求将数学、应用和计算机三者相结合,增加了数学建模、常用软件介绍和数学实验课。本书具有简明精要、逻辑严谨、论述清晰、例题和习题丰富、实用性强、便于自学等特点。 本书可作为高等院校理工科各专业线性代数课程的教材,也可供科技工作者参考。
本书为近世代数的教学提供了丰富的例子,内容包括群论、环论、域论和Galois理论。全书包含了500多个习题(包括一大题中若干小题)的解答;有近三分之一或更多的题目对初学者是较难的;有的题目是很难的(例如,华罗庚恒等式等题,在一般的书中也很难找到解答)。为帮助学生回顾所学内容,在每一节前加了“知识要点”。 本书可作为数学系本科生和研究生及其他相关专业学生的教学参考书和课外读物。