hepresentbookiasedonlecturesgivenbytheauthorattheUniversityofTokyoduringthepasttenyears.ItisintendedasatextbooktobestudiedbystudentsontheirownortobeusedinacourseonFunctionalAnalysis,i.e.,thegeneraltheoryoflinearoperatorsinfunctionspacestogetherwithsalientfeaturesofitsapplicationtodiversefieldsofmodemandclassicalanalysis.Necessaryprerequisitesforthereadingofthiookaresummarized,withorwithoutproof,inChapter0undertitles:SetTheory,TopologicalSpaces,MeasureSpacesandLinearSpaces.Then,startingwiththechapteronSemi-norms,ageneraltheoryofBanachandHilbertspacesispresentedinconnectionwiththetheoryofgeneralizedfunctionsofS.L.SOBOLEVandL.SCHWARTZ.Whilethebookisprimarilyaddressedtograduatestudents,itishopeditmightproveusefultoresearchmathematicians,bothpureandapplied.Thereadermaypass,e.g.,fromChapterIX(AnalyticalTheory.ofSemi-groups)directlytoChapterXIII(ErgodicTheoryandDiffusionTheory)andtoChapterXIV(IntegrationoftheEquationofEvolution).Suchmaterialsas"WeakTopologiesandDualityinLocallyConvexSpaces"and"NuclearSpaces"areprese
本书旨在以动力系统理论为基础,阐述时间序列分析的现代方法。这部修订版,增加了一些新的章节,对原版进行了大量的修订和扩充。从潜在的理论出发,到实际应用话题,并用众多领域收集来的大量经验数据解释这些实用话题。本书对研究时间变量信号的各个领域包括地球、生命科学科学家和工程人员都十分有用。目次:基本话题:导论;线性工具和一般考虑;相空间方法;确定论和可预测性;不稳定性:Lyapunov指数;自相似性:当决定论是弱的时候非线性方法的应用;非线性线性精选;高等话题:高等浸入式方法;混沌数据和噪音;更多有关不变量;模型和预测;非平稳信号;耦合和非线性系统综合;混沌控制。A:TISEAN程序应用;B:实验数据集合描述。读者对象:数学、生命科学、经济等众多实践应用领域的科研人员。
《矩阵分析与应用(第2版)(精装)》系统、全面地介绍矩阵分析的主要理论、具有代表性的方法及一些典型应用。全书共10章,内容包括矩阵代数基础、特殊矩阵、矩阵微分、梯度分析与化、奇异值分析、矩阵方程求解、特征分析、子空间分析与跟踪、投影分析、张量分析。前3章为全书的基础,组成矩阵代数;后7章介绍矩阵分析的主体内容及典型应用。为了方便读者对数学理论的理解以及培养应用矩阵分析进行创新应用的能力,本书始终贯穿一条主线物理问题“数学化”,数学结果“物理化”。与第1版相比,本书的篇幅有明显的删改和压缩,大量补充了近几年发展迅速的矩阵分析新理论、新方法及新应用。 《矩阵分析与应用(第2版)(精装)》为北京市高等教育精品教材重点立项项目,适合于需要矩阵知识比较多的理科和工科尤其是信息科学与技术(电子、通信、自
he present book iased on lectures given by the author at the University of Tokyo during the past ten years. It is intended as a textbook to be studied by students on their own or to be used in a course on Functional Analysis, i.e., the general theory of linear operators infunction spaces together with salient features of its application to diverse fields of modem and classical analysis. Necessary prerequisites for the reading of thiook are summarized,with or without proof, in Chapter 0 under titles: Set Theory, Topological Spaces, Measure Spaces and Linear Spaces. Then, starting with the chapter on Semi-norms, a general theory of Banach and Hilbert spaces is presented in connection with the theory of generalized functions of S. L. SOBOLEV and L. SCHWARTZ. While the book is primarily addressed to graduate students, it is hoped it might prove useful to research mathematicians, both pure and applied. The reader may pass, e.g., fromChapter IX (Analytical Theory. of Semi-groups) directly to Chapter XIII (Ergodic T
《反应扩散方程引论(第2版)》内容简介:在物理学、化学、生物学、经济学及各种工程问题中提出的大量反应扩散问题,日益受到人们的重视。叶其孝、李正元、王明新、吴雅萍编著的《反应扩散方程引论(第2版)》详细阐述了与这些问题有关的数学理论、方法及其应用,论证严谨,深入浅出,有的自封性,能把读者较快地带到反应扩散方程各种问题的研究中去。每章末附有大量习题,有助于读者深入理解《反应扩散方程引论(第2版)》的内容。 《反应扩散方程引论(第2版)》可作为高等院校数学、应用数学或其他有关专业的大学生、研究生的教材或教师的教学参考书,也可供相关研究领域的科研人员和工程技术人员参考。
本书是一本极具特色的实分析教材。内容包括LP空间、重排不等式、积分不等式、分布理论、Fourier分析、位势论和Sobolev空间等,还有专门的章节介绍变分法及特征值问题,其中涵盖了许多数学物理中的例子。阅读本书,读者只需要通常微积分的基础,但通过本书读者可以迅速地从基本的测度论进入广阔的分析世界,领略一些近年来新的研究成果。毫不夸张地说,掌握了本书知识,读者对数学分析的理解将会登上一个新台阶。 本书适合作为高等院校数学专业研究生的教材和教师的参考书,也适合自然科学和工程院系对分析工具感兴趣的学生阅读。
本书由在国际上享有盛誉的普林斯顿大学教授Stein撰写而成,是一部傅立叶分析的入门教材,理论与实践并重。为了便于非数学专业的学生学习,全书内容简明、易懂。全书分为3部分:部分介绍傅立叶级数的基本理论及其在等周不等式和等分布中的应用;第2部分研究傅立叶变换及其在经典偏微分方程及Radom变换中的应用;第3部分研究有限阿贝尔群上的傅立叶分析。书中各章均有练习题及思考题。