本书系统介绍数学建模的理论及应用,作者将数学建模的过程归结为五个步骤(即“五步方法”),并贯穿全书各类问题的分析和讨论中。本书阐述了如何使用数学模型来解决实际问题,提出了在组建数学模型并且求解得到结论之后如何进行灵敏性和稳健性分析。此外,将数学建模方法与计算机的使用密切结合,不仅通过对每个问题的讨论给了很好的示范,而且配备了大量的习题。
本书根据J. R. 曼克勒斯先生所著的Analysis on Manifolds一书译出。原书禀承了作者一贯的写作风格,论述精辟,深入浅出。主要内容包括:第一章复习并扩充了全书所需要的代数与拓扑知识;第二至四章系统论述了n维欧氏空间中的多元微积分,这是对普通数学分析的推广与提高,也是为流形上的分析做准备;第五至八章系统论述流形上的分析,其中包括一般Stokes定理和de Rham上同调等内容。此外,为便于初学者理解与接受,本书采用将流形嵌入高维欧氏空间中的观点讲述,故而又在第九章给出了抽象流形的概念并简要介绍了一般可微流形和Riemann流形。
《俄罗斯数学精品译丛:数学分析》供初学数学分析用,它包括中学所讲授的数学分析各章节的全部内容,书中讲述多项式的导数、三角函数的导数、指数函数和对数函数的导数,积分定义为微分的逆运算、图形的面积及有穷和的极限,书后附有各章的练习,《俄罗斯数学精品译丛:数学分析》并不着意于讲述的严格性,而是注意给学生以计算技巧的训练。 《俄罗斯数学精品译丛:数学分析》的对象是中学教师和高年级学生、师范院校数学专业的学生,以及初学数学分析的读者。
在物理学、化学、生物学、经济学及各种工程问题中提出的大量反应扩散问题,日益受到人们的重视。本书详细阐述了与这些问题有关的数学理论、方法及其应用,论证严谨,深入浅出,有一定的自封性,能把读者较快地带到反应扩散方程各种问题的研究中去。每章末附有大量习题,有助于读者深入理解本书的内容。
激波(或称冲击波)的产生与传播是一个普遍的物理现象。例如在连续介质中的爆破通常会产生一个激波由爆破源往外传播,在超过音速的高速飞行物体前方通常也总会有一个激波随之一起运动。在空气动力学的研究中激波的运动(包括其生成、传播、反射等)占着极其重要的地位,对激波运动的理论研究涉及许多困难的数学问题。本书以偏微分方程为主要工具对激波反射所涉及的数学问题做深入的分析。为方便读者,本书结合以后展开讨论的需要先介绍流体力学方程组以及激波的一些基本事项,然后对定常与非定常的激波反射,正则反射与马赫反射都逐一进行分析,并对其中一些重点的问题给出详细的数学证明。同时,本书也提出一些未解决的问题并指出其中会遇到的困难,期待后续研究能有新的推进。本书适合有关专业的研究生与科研人员、工程技术人员阅读
《数学分析习题集》是一本国际知名的著作。该书内容丰富,由浅入深,涉及的内容涵盖了《数学分析》的全部命题。同时,该书难题多,许多题目的难度已经超出对同学们的要求,以至于许多同学望而却步。为了帮助广大同学更好地掌握《数学分析》的基本概念,综合运用各种解题技巧和方法,提高分析问题和解决问题的能力,这本《吉米多维奇数学分析习题全解(2)》以俄文第13版为基础,对习题集中的5000道习题逐一进行了解答。 本书由毛磊、滕兴虎、寇冰煜、张燕、李静等可作为数学专业同学学习《数学分析》的参考书,又可以作为其他理工科同学学习《高等数学》、《微积分》的参考书,同时也可以作为各专业同学考研复习时的参考书。
吉米多维奇的《数学分析习题集》是一本国际知 名的著作。该书 内容丰富,由浅入深,涉及的内容涵盖了《数学分析 》的全部命题。同 时,该书难题多,许多题目的难度已经超出对同学们 的要求,以至于许 多同学望而却步。为了帮助广大同学更好地掌握《数 学分析》的基本 概念,综合运用各种解题技巧和方法,提高分析问题 和解决问题的能 力,由毛磊、滕兴虎、寇冰煜、张燕、李静等编著的 《吉米多维奇数学分析习题全解(3)》以俄文第13版 为基础,对习题集中的5000道习题逐一进行 了解答。
《高等数学习题集精品系列·数学分析例选:通过范例学技巧》通过解答一些特别挑选的范例(共153个题或题组)来提供数学分析习题的某些解题技巧,还给出了20世纪60年代以来的某些研究生入学试题及多种国外资料的杂题(共200个题或题组)。《高等数学习题集精品系列·数学分析例选:通过范例学技巧》包含问题总数超过600个,其中大约450个给出解答或提示。这些例题和杂题有一定的难度。
本书共分七章:绪论,初等积分法,线性方程组与方程,常系数线性微分方程与方程组,一般理论,稳定性初步,一阶偏微分方程。为了巩固所学知识,每章均配有一定量的习题,书后附有部分习题答案与提示。 本书可作为高等院校数学系本科学生的教材,也可供工科学生及工程技术人员参考。
本书是大学数学的内容、方法与技巧丛书之一,对常微分方程的主要内容、基本方法与常用技巧进行了全面的讨论与分析,用大量的例题对所讨论的内容与方法作了演示与论证。全书的内容包括初等积分法、基本定理、线性微分方程、线性微分方程组、定性与稳定性概念及一阶偏微分方程。本书用简明易懂、通俗流畅的语言深人浅出地诠释概念、解析疑难、演绎方法与投巧,帮助读者理解与熟悉常微分方程的基本概念与理论,培养读者运用常微分方程方法分析问题与解决问题的能力,本书与教材同步,在方法与技巧上略有拓宽与提高,是大学生、工程技术人员与经济分析人员的、读之有益的一本好书。
本书全面、系统地介绍了矩阵论的基本理论、运算方法及其应用。全书分八章,前四章突出基础理论,重点介绍线性空间与线性变换,欧氏空间与酉空间,Jordan标准形,向量与矩阵的范数理论。后四章侧重应用,学习矩阵的分析运算,特征值的估计,广义逆矩阵在解线性方程组中的应用,矩阵直积在解矩阵方程及矩阵微分方程中的应用。每章配有相应的习题,书末给出答案与提示。附录中给出哈工大研究生矩阵分析2007 2012年考试试题及参考答案。本书力求行文流畅,例题详实,推论严谨,深入浅出,旨在提高工科研究生的数学修养和自学能力。
本书涵盖了高等微积分学的丰富内容,*精彩的部分集中在基础拓扑结构、函数项序列与级数、多变量函数以及微分形式的积分等章节。
上海交通大学数学系是全国工科数学教学基地, 数学教学成绩一直以优秀闻名全国。上海交通大学数 学系编写的《数学分析试题分析与解答(新核心理工 基础教材普通高等教育十二五重点规划教材配套辅导 )》选编了该校近年的24份本科生数学分析试卷,对 每一道试题均作详解,并有题前分析和题后点评,指 明解题思路和方法以及学生在解题过程中常犯的错误 ,有的题还给出多种解法。 本书可作为高等院校《数学分析》课程师生的教 学辅导用书,也可供考研者参考。
数学分析是大学数学系的必修课,也是理工科高等数学的主要组成部分,更是研究生考试的必考内容。关于数学分析,富盛名习题,莫过于前苏联数学家,鲍里斯帕夫罗维奇 吉米多维奇编写的《数学分析习题集》。但是在相当长的一段时间之内,这套书只有题目,并无标准解法,直到20世纪八十年代初由我国著名数学家费定晖,周学圣等人将其全部解出,并且反复演算,终集结成册,由山东科学技术出版社出版,这就是在数学界大名鼎鼎的《1.Б.П.吉米多维奇数学分析习题集》。从《吉米多维奇数学分析习题集》到《吉米多维奇数学分析习题集题解》虽然两字之差,但是包含了一代数学大师们无数的心血。 直至1977年吉米多维奇去世,全套题集共计4462道,由浅入深的涵盖了数学分析题目的全部变化形式,部分习题难度很大,因此无论是自学、提高还是考研,这本书
《全国普通高等院校土木工程类实用创新型系列规划教材:结构分析有限元法》重点介绍了有限元法的基本理论,内容包括能量原理、平面问题、杆件问题、空间及轴对称问题、板壳问题及结构动力学问题。 《全国普通高等院校土木工程类实用创新型系列规划教材:结构分析有限元法》讲述有限元法的基本原理及土木工程结构中的单元分析,单元类型包括平面杆系、空间杆系、平面等参元、空间等参元、薄板弯曲单元和厚薄板通用单元等。全书以论述结构线弹性静力分析为主,后介绍了结构的振动和动力响应分析。 《全国普通高等院校土木工程类实用创新型系列规划教材:结构分析有限元法》可作为高等院校土木工程专业本科生有限元法课程教材,也可供相关专业的科技人员参考。
“数学分析”是数学专业的基础课,本书是根据安徽省师范院校数学专业学生的基础情况、教学背景等因素量身打造的数学专业课教材之一.教材内容是由讲授此课程多年的老师经过多次讨论商定的,其中包括一元微积分学、多元微积分学、级数理论等基础内容,分上、下两册.本书适合师范院校数学专业本科生使用,也可供各高校数学系教师参考.
《数学分析选讲》分为上、下两册。本书为下册,是为报考硕士研究生的学生并兼顾正在学习“数学分析”课程的学生编写的复习指导书。目的是帮助他们从概念和方法两方面深化、开拓所学数学分析的内容。本书按数学分析课的内容分为四章:极限理论、连续函数、一元函数微分学和一元函数积分学。每章由基本概念分析和解题方法分析两部分组成。前一部分,针对学生学习时易出现的错误,设计编写了各种形式的问题,以引导读者对基本概念、基本理论进行多侧面、多层次、由此及彼、由表及里的思索和辨析;后一部分则着重分析解题思路,探索解题规律,归纳、总结解题方法。《数学分析选讲》对读者掌握分析问题和处理问题的方法与技巧有较好的指导作用。所选例题、习题内容广泛,且具有与硕士研究生入学考试相当的水平。本书对从事数学分析和高
本书是一部实分析方面的经典教材,主要分三部分,第壹部分为经典的实变函数论和经典的巴拿赫空间理论;第二部分为抽象空间理论,主要介绍分析中有用的拓扑空间以及近代巴拿赫空间理论;第三部分为一般的测度和积分论,即在第二部分理论基础上将经典的测度、积分论推广到一般情形。.
本书研究如何将线性科学中适用的强有力的基本方法发展推广到非线性科学。书中全面系统论述作者及其课题组近几年建立的新研究方法,如多线性分离变量法、泛函分离变量法和导数相关泛函分离变量法、形变映射法、方程推导的非平均法等。本书还系统介绍了在非线性数学物理严格解研究方面的一些其他重要方法及其*发展,如有限和无限区域的反散射方法、形式分离变量法、奇性分析法、对称性约化方法、达布变换方法和广田直接法等等。书中利用这些方法,对非线性系统中的各种局域激发模式及其相互作用作了详尽的描述。 本书可作为高等院校物理系和数学系等理工科高年级本科生选修课教材和研究生专业基础课教材,也可供物理、数学、力学、计算机、大气和海洋科学等非线性科学领域的研究人员参考。
《工科数学分析》分上、下两册。本书为其下册,共分四章,依次为:多元函数微分学,多元函数积分学,第二型曲线积分与第二型曲面积分、向量场,无穷级数。每章均有供自学的综合性例题。 本书叙述详细,说理透彻,例题由浅人深,可作为工科大学一年级新生数学课教材,也可作为备考工科硕士研究生的人员和工程技术人员的参考书。