《矩阵迭代分析(第二版)》的作者现任英国肯特大学教授,多种国际权威杂志主编或编委。《矩阵迭代分析(第2版)》**版1962年由Prentice Hall出版,是矩阵迭代分析方面的**教材。此次修订,有些章节吸收了新的研究成果,如弱正则分裂方面的结果;有些章节则增添了新的内容,引述了*近的定理,更新了参考文献,读者从中可以了解一些*新的发展方向。此次修订,新的章节的内容基本上都是自含的,并添加了习题。原版主要基于线性代数方法,而修订版强调借助其他领域的工具,如逼近论和共型映射理论,得到更加新颖的结果。《矩阵迭代分析(第2版)》尤其适合从事数值分析的科研人员和研究生阅读。
ThisbookistheouteofseveralcoursesandseminartalksheldattheInstitutodeMatematicaPuraeAplicada(IMPA)overtheyears.Itisagreatlymodifiedversionofapreviousworkbytheauthors,EquacoesDiferenciaisParciais,Umalntroducao,(ProjetoEuclides,IMPA,1978).Ithasatwofoldpurpose,namelytointroducethestudenttothebasicconceptsofFourieranalysisandprovideillustrationsofrecentapplicationswheretheseconceptswereusedtostudyvariouspropertiesofthesolutionsofsomeimportantnonlinearevolutionequations.
复杂性理论主要研究决定解决算法问题的必要资源,以及利用可用资源可能得到的结果的界,而对这些界的深入理解可以防止寻求不存在的所谓有效算法。复杂性理论的新分支随着新的算法概念而不断涌现,其产物——如NP一完备性理论——已经影响到计算机科学的所有领域的发展。本书视随机化为一个关键概念,强调理论与实际应用的相互作用。本书论题始终强调复杂性理论对于当今计算机科学的重要意义,包含各种具体应用。
A carefully prepared account of thebasic ideas in Fourier analysis and its applications to the studyof partial differential equations. The author succeeds to make hisexposition accessible to readers with a limited background, forexample, those not acquainted with the Lebesgue integral. Readersshould be familiar with calculus, linear algebra, and plexnumbers. At the same time, the author has managed to includediscussions of more advanced topics such as the Gibbs phenomenon,distributions, Sturm-Liouville theory, Cesaro summability andmulti-dimensional Fourier analysis, topics which one usually doesnot find in books at this level. A variety of worked examples andexercises will help the readers to apply their newly acquiredknowledge.
复杂性理论主要研究决定解决算法问题的必要资源,以及利用可用资源可能得到的结果的界,而对这些界的深入理解可以防止寻求不存在的所谓有效算法。复杂性理论的新分支随着新的算法概念而不断涌现,其产物——如NP一完备性理论——已经影响到计算机科学的所有领域的发展。本书视随机化为一个关键概念,强调理论与实际应用的相互作用。本书论题始终强调复杂性理论对于当今计算机科学的重要意义,包含各种具体应用。
《泛函分析索伯列夫空间和偏微分方程(英文版)》提出了一个连贯的、确切的、统一的方法将两个来自不同领域的元素——泛函分析和偏微分方程,结合在一起,旨在为具有良好实分析背景的学生提供帮助。通过详细地分析一维PDEs的简单案例,即ODEs,一个对初学者来说比较简单的方法,该书展示了从泛函分析到偏微分方程的平滑过渡。
本书是世界知名统计学家的力作,主要内容有多元正态分布、方差分析、回归分析、因子分析、椭球等高分布、相依性模式、图模型。附录中还列出了矩阵理论、Wilk似然准则和其他常用检验的显著性水平的分位数。 本书在世界各高等学校中广为采用,是一本经典的多元统计分析课程的教材,也可供相关统计研究人员、应用多元统计的科技工作者参考。
这是由数学大师、菲尔兹暨沃尔夫奖得主Hormander撰写的一部经典的数学著作。作者用统一的观点处理多复变的基本内容,包括单复变解析函数、多复变函数的基本性质、多复变函数在交换巴拿赫代数中的应用、e算子的存在性定理和L2方法、Stein流形、解析函数的局部性质以及Stein流形上的凝聚解析层等7章内容,最为精彩的是关于e算子的L2方法的介绍,其叙述方式至今依然被奉为范本。全书每章都有注记,介绍相关知识点的发展历史等。 本书可作为高等院校数学系研究生教材和相关研究人员的参考书。
本书以Guttman的内部一致性准则作为对应分析的基本数学模型,介绍了若干种与之等价的数学模型,讨论了对应分析与主成分分析之间的关系,对于有序数据和多维表数据,介绍了对应分析的具体算法,书中以专门一章介绍了对应分析的变量选择方法(逐步对应分析),并以若干应用实例证明了它的功效。 本书既可作为统计学专业本科生和研究生的教学参考书,又可为与应用统计有关各领域的科研工作者和工程技术人员提供参考。
陈国旺编著的《索伯列夫空间导论》主要讲述索伯列夫空间一般理论和在非线性偏微分方程中的应用。内容涉及Lebesgue空间Lp(Ω)及其基本性质;整数阶索伯列夫空间Wm,p(Ω)及其性质;Wm,p(Ω)空间的嵌入定理、紧嵌入定理和插值定理以及连续函数空间的嵌入定理。论述研究非线性发展方程时,常用到的含有时间的空间和含有时间的索伯列夫空间。介绍类似于索伯列夫空间嵌人定理的离散函数的插值公式,并利用离散函数的插值公式证明广义Schrodinger型方程组初边值问题整体广义解的存在性。讲述速降函数、缓增广义函数以及它们的Fourier变换和Lebesgue空间的Fourier变换,分数阶索伯列夫空间Hs(RN)和Hs(Ω)及其性质。介绍近年来外关注的几个非线性发展方程的初边值问题和Cauchy问题解的存在性以及解的爆破现象和解的渐近性质,使读者较快地利用索伯列夫空间这个有力理论工