《法兰西数学精品译丛:谱理论讲义(第2版)》是由J.迪斯米埃在20世纪70年代开设线性算子谱理论课程时手写油印的讲义翻译而来的在相当长的一段时期里,该讲义在法国被这一领域的所有学生认真反复阅读,也被教授这一课程的教师大量使用、在本书中,迪斯米埃以完整地陈述谱定理为核心目的,通过基本也是常用的一些例子让读者明白所引进的每一个概念、每一条定理,都是在后续内容中必不可少的,并娴熟地应用各种技巧对定理给出精确、简短而优雅的证明——这就是布尔巴基成员的作品。而本书中体系的严谨与清晰明了则是作者一贯的写作风格 《法兰西数学精品译丛:谱理论讲义(第2版)》可以作为研究生泛函分析基础课的教材,也可以作为大学本科高年级选修课教材,、对于非泛函方向的学生来说,《法兰西数学精品译丛:谱理论讲义(第2
本书对于积分给予了更深层次的介绍,总结了一些计算积分的常用方法和惯用技巧,叙述严谨、清晰、易懂。
《极值与*值(下卷)》共分4章,介绍了如何运用冻结变量求极值,并阐述了极值与*值的相关应用,变量代换法是求函数极值与*值的方法之一,它可使问题简化,本文对此进行了探讨。《极值与*值(下卷)》适合中学师生及广大数学爱好者阅读学习。
《从求解多项式方程到阿贝尔不可能性定理 细说五次方程无求根公式》试图在高中数学的基础上,把初等数论、高等代数中的一些重要概念与理论串在一起详加论述。 《从求解多项式方程到阿贝尔不可能性定理 细说五次方程无求根公式》分为六个部分,从 多项式方程的求解与数系的扩张 、 整数的一些基本概念、定理与理论 、 数域、扩域与代数扩域的一些基本理论 、 多项式的一些基本概念、定理与理论 、 阿贝尔引理、阿贝尔不可约定理以及一些重要的扩域 、 多项式方程的根式求解、克罗内克定理与鲁菲尼 阿贝尔定理 逐步展开,尽可能地用通俗易懂的方式细说 不可能性定理 的种种方面。 《从求解多项式方程到阿贝尔不可能性定理 细说五次方程无求根公式》可供高中学生、理工科大学生、大中学校数学教师以及广大的数学爱好者在学习与教学解多项式方
本书介绍了复变函数的一些基础知识,主要包括复数与复变函数、解析函数与保形变换、复积分、级数、残数与辐角原理、解析开拓、正规族与Riemann映射定理、调和函数。
《数林外传系列:凸函数与琴生不等式》将中学阶段的大量初等不等式进行了较系统的归类和介绍,阅读本书可以开拓读者在不等式方面的视野,提高对不等式的认知和解决同类问题的能力,《数林外传系列:凸函数与琴生不等式》适合中学数学教师和对不等式感兴趣的高中学生。 本书以凸函数与琴式不等式为纲,将中等数学中的二百多个有趣的不等式有序地组织起来,可以大大拓广高中学生、中学数学老师在不等式方面的视野,有利于提高高中学生在不等式方面的数学修养。而不等式是高校自主招生、高考、数学竞赛中不可缺少的内容。全书资料主要来源有两部分,一部分取自国外英文中等数学杂志,另一部分是作者自编的,取自英文中等数学杂志的题目的解答很多都由作者改写,目的是降低阅读目槛,使具有高一数学知识的学生能读懂全书。本书一个鲜
这本生动、简洁的书基于作者在莫斯科大学力学数学系的本科生课程讲义,涵盖了计算的一般理论的基本概念。《可计算函数》从可计算函数的定义和一个算法开始,讨论了可判定性、可数性、通用函数、编号系统及其性质、m-完全性、不动点定理、算术分层、oracle计算、不可判定性的度。作者还介绍了一些特殊的函数模型,如Turing机和递归函数。 《可计算函数》可供数学和计算机专业的本科生阅读,也可供所有希望学习计算的一般理论的基础知识的数学家和程序员使用。
《超越普里瓦洛夫:无穷乘积与它对解析函数的应用卷》对于无穷乘积及其对解析函数的应用给予了更深层次的介绍,《超越普里瓦洛夫:无穷乘积与它对解析函数的应用卷》总结了一些计算无穷乘积的常用方法和惯用技巧,叙述严谨、清晰、易懂。《超越普里瓦洛夫:无穷乘积与它对解析函数的应用卷》适合于高等院校数学与应用数学专业学生学习,也可供数学爱好者及教练员作为参考。
本书是普通高等工科院校基础课规划教材之一,内容包括高等教育工科各专业所需要的复变函数和积分变换的基础知识。主要有复数与复变函数、解析函数、复变函数的积分、级数、留数、保角映射、傅里叶变换和拉普拉斯变换等。每章末附有小结和自测题,以便于读者自学时能够抓住重点和检查自己对本章学习的基本情况。书末附有习题答案和参考书目。 本书在编写过程中力求做到条理清楚、重点突出,注重解题方法的训练和思维能力的培养。本书可以作为高等教育工科各专业该课程的教材,亦可作为其他专业学习这门课程的教学参考书。本书使用学时建议为48~64学时。
本书从实变函数论的发展简史出发,深入浅出地阐述了实变函数论的基本理论、基本问题和基本方法.本书共分为六章,内容包括: 实变函数论发展简史、集合与点集、可测集、可测函数、勒贝格积分理论和勒贝格意义下的微分与不定积分等.本书各部分主题鲜明,逻辑性强,内容的讲解由浅入深,对基本概念的阐述透彻,着力将每个知识点与中学数学的知识及已经学过的大学其他数学课程(例如数学分析)联系起来,便于读者比较与加深理解,增加对知识背景的认识.书中也极力渗透拓扑学思想及较勒贝格积分理论更加一般的积分理论,为后续课程的学习奠定基础.书中每节配有适量的习题,其中既有对易于混淆的基础知识的考查,也有更为深刻的结果.书末附有习题答案与提示,便于教师教学和学生自学. 本书既可作为高等院校数学与应用数学专业实变函数论
本书共分五章: 章论述非线性算子的一般性质,包括连续性、有界性、全连续性、可微性等,并给出了隐函数定理和反函数定理。 第二章建立拓扑度理论,不仅建立了重要的有限维空间连续映象Brouwer度和Banach空间全连 续场的Leray-Schauder度,而且论述了较常用的凝聚场的拓扑度和A-proper映象的广义拓扑度。 第三章将半序和拓扑度(不动点指数)相结合来研究非线性算子方程的正解,讨论了常用的凹算子和凸算子的正解及多解问题。 第四章主要证明强制半连续单调映象的满射性和强制多值极大单调映象的满射性。 第五章论述非线性问题中的变分方法,既包括古典的极值理论,也包括属于大范围变分学的Minim ax原理和Mountain Pass引理等。 书中包括了对于非线性积分方程、常微分方程以及二阶半线性椭圆型偏微分方程的应用。 本书可
本书建立了六类微积分与泛力学的初步理论。前十章是六类微积分及其在物理学中的应用。第十一章至第十四章是泛力学理论基础,主要陈述泛力学的意义,LMT泛力学,奇异点泛力学,主体与人泛力学(包括连续人,离散人,大尺人泛力学)的初步内容,揭示了我们人类的物理学只是九类物理学中的三类,还有六类倘未问津;论证了万有引力定律只是连续主体(地球人属于连续主体)才能观测到的结果;从理论上指出了存在的相对性。 书末附录,陈述了物理学的相对性与地球人在宇宙中的地位。 本书力求深入浅出,可供大学生,研究生与教师阅读,也可供对数学与物理的创新,特别是对泛力学感兴趣的朋友阅读。 本书泛力学的摘要已被多部大型综合性论文集、文库、论坛精典等录用。
本书共分4章,介绍了如何运用冻结变量求极值,并阐述了极值与最值的相关应用。
《实变函数论与泛函分析(上册)(第2版)》是普通高等教育“十五”*规划教材,在《实变函数论》(高等教育出版社2000年出版)的基础上修订而成。本版保留了版的风格:注重问题的提出与分析,从分析问题的过程中寻找解决问题的方法,着重培养学生解决问题的能力,对概念、定理的背景与意义交待得比较清楚,介绍了新旧知识之间、实变函数与其它数学分支之间的内在联系。全书围绕Lebesgue测度、可测函数、可测函数的Lebesgue积分展开;语言流畅,逻辑严谨、具有较强的可读性。 《实变函数论与泛函分析(上册)(第2版)》全书共分五章:集合、测度论、可测函数、Lebesgue积分,以及抽象测度与积分。《实变函数论与泛函分析(上册)(第2版)》适合综合性大学.师范院校数学系各专业本科生作为教材使用,也适合于理、工科部分专业的本科生及
递推数列多年来一直是数学竞赛的命题来源,对于今天的竞赛选手及教练来说已不是难题。而利用差分方法求解数列问题有很多优点。《差分方程的拉格朗日方法:从一道2011年全国高考理科试题的解法谈起》从一道2011年全国理科试题的解法谈起,首先全文摘录了一篇作者23年前发表的小文章。然后再进行现实的联系并进而介绍差分方程理论的完整体系。并进一步介绍了俄罗斯数学家在差分方程解的稳定性方面的前沿结果。 《差分方程的拉格朗日方法:从一道2011年全国高考理科试题的解法谈起》适合于优秀的初高中学生尤其是数学竞赛选手、初高中数学教师和中学数学奥林匹克教练员使用,也可作为高等院校教师和学生的学习用书及数学爱好者的兴趣读物。
本书是数学系高年级本科生或工科研究生的泛函分析课程入门教材. 全书主要内容有:度量空间、紧性、线性赋范空间、压缩映射原理、凸集与不动点、内积空间、线性算子和线性泛函的定义、Baire纲推理、开映像定理、线性泛函延拓定理、共轭空间、弱收敛、自反空间、Riesz定理及其应用、Lp的共轭空间、线性空间上的微分学、谱的概念和基本性质、紧算子及其谱性质、投影算子、自伴算子、正常算子和酉算子、Hilbert空间上的紧自伴算子、谱定理、解析泛函演算等. 每节后配有练习,书后配有名词索引. 本书可作为相关课程教材,也可作为教师和研究人员的参考书.
《实变函数(第三版)》是作者在多年教学经验的基础上撰写的一部实变函数教材,第二版在**版使用9年的基础上作了修订,第三版特别增加了部分习题参考答案与提示。《实变函数(第三版)》内容包括:集合与实数集、Lebesgue测度、可测函数、Lebesgue积分、微分和积分、Lp空间。每章后均附习题与例题,以便于读者学习和掌握实变函数论的基础知识。
本书是根据高等院校对“复变函数”课程的基本要求,依据综合大学数学专业的复变函数教学大纲,结合本学科的发展趋势,在积累多年教学实践的基础上编写而成的.本书内容以“必需、够用”为度,旨在培养学生的数学素养,提高其应用数学知识解决实际问题的能力. 全书共分7章,系统地介绍了复变函数的基本理论和基本方法,包括复数与复变函数、解析函数、复变函数的积分、解析函数的幂级数表示、解析函数的洛朗展式及其孤立奇点、留数理论及其应用、共形映射. 本书适合综合类院校中的数学与应用数学专业学生使用,也可供工程技术人员阅读参考.