本书共分9章,内容包括复数与复变函数、解析函数、复变函数的积分、复级数、留数、保形映射、傅里叶变换、拉普拉斯变换、Z变换。每章后边配有相关练习题。书末配有2个附录,分别是傅氏变换简表和拉氏变换简表。
本书共十六章.内容比较独立的是章与第十章.前者涉及解析函数理论中的部分基本问题,后者讨论了T函数及相关函数的幂级数展开,以及与之有关的级数与积分.其余各章大体可分为三部分. 第二章到第五章围绕无穷级数而展开.内容包括:一、由解析函数Taylor展开而演绎出的各种变型;二、将常微分方程的幂级数解法用于求解已知函数的幂级数展开;三、卷积型级数的M6bius反演问题. 第六章至第九章的中心是应用留数定理计算定积分,包括从一些简单的积分出发而演绎出许多新的积分.特别是,笔者综合已有的弓I理,提出了一个新的引理;并在此基础上,建立了计算含三角函数无穷积分的新方法. 第十一章至第十六章讨论的是积分变换,介绍了有关Fourier变换和Laplace变换的一些理论问题.书中还介绍了Mellin变换,它与Fourier变换或Laplace变换密切相
无
本书从数学学科的特色、人文欣赏的视野着手,运用通俗的语言、生动的例子介绍函数的数学文化内涵及其函数知识在现实世界中的广泛应用主要内容包括函数概念与函数图像常识及其美学欣赏、相遇比例函数、相遇增长函数、相遇周期函数的数学文化内涵欣赏及其实际应用。
《控制之美(卷1)——控制理论从传递函数到状态空间》涵盖了动态系统分析、经典控制理论与现代控制理论的核心基础内容。其中,经典控制理论以拉普拉斯变换为数学工具,通过传递函数分析系统的表现并进行控制器的设计;现代控制理论以状态空间方程为研究对象,以微分方程和线性代数为数学工具,从时域的角度分析系统的表现并设计系统的控制器。 本书在多个章节对比讲解了两种理论之间的区别与联系。本书共分为10章。第1章为绪论;第2、3章分别介绍使用传递函数和状态空间方程描述系统的方法;第4、5章使用这两种方法分析一阶系统与二阶系统的时域响应;第6章介绍系统稳定性的概念;第7、8章重点分析经典控制理论中的控制器设计方法,包含比例积分控制和根轨迹法;第9章介绍系统的频 率响应并与滤波器的设计相结合; 0章讨论现代控制理论中的控制器设
本书首先简单介绍有限元方法,然后着重介绍混合有限元方法的基本概念、基本理论、基本方法及应用,其中包括有限元法的适定性和收敛性理论分析;非线性发展方程的混合有限元法及其数值计算方法;定常的热传导-对流方程的混合有限元方法;非定常的热传导-对流方程的混合有限元方法等内容。通过一些典型的例子和一些本学科的前沿应用实例说明混合有限元法的应用前景,其中包括作者近年来的一些研究工作。本书内容丰富,编排上采用循序渐进方式,先从典型的问题着手,再进行分析讨论,导出有关理论方法,易于读者理解掌握。 本书既适合理科工科院校相关专业的研究生或本科生作为教材,又可以作为从事数值分析的工程技术人员自学和进修计算方法的参考书。
《多项式和多项式不等式(英文版)》是springer数学研究生教材(gtm)第161卷,主要介绍多项式和有理函数,重点论述代数多项式和三角多项式的特性,同时也介绍了多项式几何、正交多项式、切比雪夫和马可夫系、müntz系和müntz-type型稠密性定理,以及不等式用于多项式和有理函数等理论。其中有些内容较同类图书更加全面。目次:导论和基本特性;特殊多项式;切比雪夫和笛卡儿系;稠密性问题;基本不等式;müntz空间中的不等式;有理函数空间中的不等式。 读者对象:数学及相关专业研究生和科研人员。
本书系统叙述了非线性泛函分析及其应用领域中的基本内容,其中包括拓扑度理论、半序方法(半序拓扑方法)、变分方法、分歧理论和Banach空间微分方程理论,重点讨论了这一领域近二十多年来的研究成果。 本书可供高等学校数学及其相关专业的高年级大学生、研究生、教师以及相关领域的研究人员阅读参考,也可以作为研究生教材使用。
本书主要讨论解析函数空间上的算子理论,为青年学者进入这一研究领域提供一个初级平台。本书主要介绍了算子理论中经常用到的涉及算子矩阵的一些结果,如Douglas准则,cholesky因子分解定理等;本书较为详细地介绍了H2空间及其上的算子理论的deBranges—Rovnyank方法;本书还介绍了Bergman空间及其上的算子的基本理论,特别是关于Toeplitz型算子的紧性的讨论,介绍了研究再生核空间上的算子紧性的强有力的工具——Berezin变换;书中还包含一些近的研究成果。 本书读者对象为数学类各专业高年级学生、研究生、教师及有关专业的科技工作者。
本书系统论述了函数方程与微分方程解析解的存在性问题,书中既有关于不含偏差变元函数方程与微分方程解析解存在性的经典工作的回顾,又包括近年来有关迭代函数方程与迭代微分方程解析解的许多*成果。本书内容翔实、深入浅出,是一本系统涉猎方程解析解的参考书。 本书可供大学数学系高年级学生、研究生、教师及其他感兴趣的数学工作者阅读参考。
30年来,动力系统的数学理论与应用有了很大发展。30多年前还没有高速的台式计算机和计算机图像,“混沌”一词也没有在数学界使用,而对于微分方程与动力系统的研究兴趣主要仅限于数学界中比较小的范围。到今天,处处有计算机,求微分方程近似解的软件包已得到广泛运用,使人们从图形中就能看到结果。对于非线性微分方程的分析已为广大学者所接受,一些复杂的动力学行为,如马蹄映射、同宿轨、Lorenz系统中揭示出来的复杂现象,以及数学方面的分析,使学者们确信简单的稳定运动,如平衡态和周期解己不总是微分方程解的重要的行为,而混沌现象揭示出来的美妙性态正促使各个领域的科学家与工程师细心关注在他们自己领域中提出的重要的微分方程及其混沌特性。动力系统现象在今天已出现在几乎每个科学领域中,从化学中的振荡Belousov-Zhabotinsky反应
《函数论与泛函分析初步(第7版)》是世界著名数学家A.H.柯尔莫戈洛夫院士在莫斯科大学数学力学系多年讲授泛函分析教程(曾称《数学分析Ⅲ》)的基础上编写的。《函数论与泛函分析初步(第7版)》是关于泛函分析与实变函数论的精细问题的严格的系统阐述,书中反映了作者的教育思想,体现了作者丰富的教学经验与方法。内容包括:集合论初步,度量空间与拓扑空间,赋范线性空间与线性拓扑空间,线性泛函与线性算子,测度、可测函数、积分,勒贝格不定积分、微分论,可和函数空间,三角函数傅里叶变换,线性积分方程,线性空间微分学概要以及附录的巴拿赫代数。 《函数论与泛函分析初步(第7版)》适合数学、物理及相关专业的高年级本科生、研究生、高校教师和研究人员参考使用。
本书内容简介:This book is an outgrowth of a course which I gave atOrsay duringthe academic year 1 966.67 MY purpose in those lectureswas to pre-sent some of the required background and at the sametime clarify theessential unity that exists between several relatedareas of analysis.These areas are:the existence and boundedness ofsingular integral op-erators;the boundary behavior of harmonicfunctions;and differentia-bility properties of functions of severalvariables.AS such the commoncore of these topics may be said torepresent one of the central develop-ments in n.dimensional Fourieranalysis during the last twenty years,and it can be expected tohave equal influence in the future.These pos.
实变函数论是数学的一个重要分支,它在近代数学的各分支中有着广泛而深刻的应用。《实变函数习题精选》详细解答了由徐森林、薛春华编写的《实变函数论》中的练习题和复习题,尤其是其中的难题。它可帮助解难题有困难的读者渡过难关,也可帮助青年教师更好、更有信心地教好这门课。对应于原书,该书共分4章。全书的主要特点是:1.一题多解,使读者打开思路,开阔视野。每题叙述清晰,论证严密;2.给出解题思路,突出关键;3.解答难题时,注意对分析能力与研究能力的培养,尤其是创造性能力的培养;4.注重一般测度论和一般积分理论的论述,有利于概率统计方向的学生对学习研究能力的培养;5.内容、例题的训练与难题解答连贯起来,以使读者融会贯通,获得较强的分析功夫,在学习和研究上呈现出一个飞跃。《实变函数习题精选》可作为综合性大
本书利用简单的分析工具(代数多项式与三角多项式)来讨论函数的逼近理论.本书主要介绍一致逼近理论,书中限于用古典分析的方法来处理函数逼近问题,述理说明,取材丰富,特别是对前苏联数学家在这方面的巨大成就进行了较多叙述,同时书中几乎未用到复变函数论方法. 本书可供数学专业大学生及高等数学研究人员参考阅读.
内容简介:本书共有七章,分别为勾股数的性质及其应用,佩尔方程及其应用,无穷递降法,指数中含有未知数的一些特殊的不定方程(组),几何问题中的不定方程,其他一些特殊不定方程的解法,数学竞赛中与不定方程(组)相关的问题.本书适合大学师生及数学爱好者参考使用.