微分几何讲义(修订版)
这是一本教读者微积分轻松入门的读物,也是一本轻松简单适合自学的书。本书语言轻松幽默,通过大量贴切具体的图形图像尽可能生动地介绍微积分各个主题概念的由来,将中学数学与高等数学完美衔接,中间穿插数学史还原数学思想的产生思路,还有常用的高等数学符号趣谈加深读者学习印象,了解微积分发展的来龙去脉。作者总结多年微积分教学经验,用尽可能浅显易懂的语言,总结学习方法、归纳实用规律,指出常见错误和学生学习盲点,提供详细的解题技巧,中间还穿插一题多解拓宽视野,助力读者轻松快乐地从更高角度掌握微积分具体知识点,让读者对微积分有比较清楚的认知。特别地,本书对中国古代数学和古代数学思想多有介绍,让读者在轻松入门微积分的过程中也能体会到中国古代先哲对数学的贡献。
本书主要介绍了数学分析中的内容,以构造数系和集合论开篇,逐渐深入到级数、函数等高等数学内容,举例详实,每部分内容后的习题与正文内容密切相关,有利于读者掌握所学的内容。本书在附录部分还介绍了数理逻辑基础
阿德里安·班纳著的《普林斯顿微积分读本》阐述了求解微积分的技巧,详细讲解了微积分基础、极限、连续、微分、导数的应用、积分、无穷级数、泰勒级数与幂级数等内容,旨在教会读者如何思考问题从而找到解题所需的知识点,着重训练大家自己解答问题的能力。 本书适用于大学低年级学生、高中高年级学生、想学习微积分的数学爱好者以及广大数学教师,既可作为教材、习题集,也可作为学习指南,同时还有利于教师备课。
微积分是高等数学中研究函数的微分、积分以及有关概念和应用的数学分支,是数学的一门基础学科,内容主要包括极限、微分学、积分学及其应用。本书的内容包括函数,导数及其应用,指数、自然对数函数及其应用,定积分,多元函数,三角函数,积分技术,微分方程,泰勒多项式和无穷级数,概率与微积分。全书图表清晰,版式美观,条理清楚,从概念介绍开始逐步深入,详细给出了解题步骤及微积分在生活中的应用,每节和每章的末尾都给出了大量的习题。本书可作为经济管理科学、社会科学和生命科学等非理工科专业学生一学期或两学期的应用微积分课程双语教材,也可作为相关技术人员的参考书。
积分论一直是分析学的核心领域,近年来产生的非可加积分、集值积分与模糊值积分理论发展迅速,且在信息论、控制论、数量经济、决策过程、人工智能和大数据等领域有着广泛的应用.本书系统介绍非可加积分、集值积分与模糊值积分领域的最新理论成果,因为其涵盖了经典的Lebesgue积分,所以定名为“广义积分论”.内容有:单值积分,包括抽象Lebesgue积分、Bochner积分、模糊积分、(N)模糊积分、半模模糊积分、广义模糊积分、Choquet积分、拟积分、广义Choquet积分、格值广义模糊积分;集值积分,包括Aumann积分、Debreu积分、集值模糊积分、集值Choquet积分;模糊值积分,包括模糊值Aumann积分、模糊值模糊积分、模糊值Choquet积分;关于模糊数测度的积分;关于模糊数模糊测度的模糊积分、广义模糊积分、广义Choquet积分;广义模糊数理论.
本书是国外 数学著作原版系列之一,本书分为绪论和九章内容,给出了利用代数多项式和样条进行函数逼近的微积分方法理论基础和在数值分析中应用这一理论的途径。 该方法基于使用积分残差作为逼近函数和互补函数的适配条件。