这本经典的概率论教材通过大量的例子系统介绍了概率论的基础知识及其应用,主要内容有组合分析、概率论公理、条件概率、离散型随机变量、连续型随机变量、随机变量的联合分布、期望的性质、极限定理和模拟等,内容丰富,通俗易懂.各章末附有大量的练习,分为习题、理论习题和自检习题三大类,并在书末给出自检习题的全部解答。 本书是概率论的入门书,适合作为数学、统计学、经济学、生物学、管理学、计算机科学及其他各工学专业本科生的教材,也适合作为研究生和应用工作者的参考书。 2步获取导学视频: ①微信视频号关注 IT阅读排行榜 ②点击 直播回放 栏,上滑寻找
本书是一本非数学专业主要是文科及艺术类专业的数学教材,讲述方式活泼,案例贴近生活,读者可以在轻松学习中体会数学乐趣和意义。全书分为三大部分:归纳和演绎、逻辑和数;代数和几何;概率统
道恩·格里菲思著的《深入浅出统计学》具有“深入浅出”系列的一贯特色,提供符合直觉的理解方式,让统计理论的学习既有趣又自然。从应对考试到解决实际问题,无论你是学生还是数据分析师,都能从中受益。本书涵盖的知识点包括:信息可视化、概率计算、几何分布、二项分布及泊松分布、正态分布、统计抽样、置信区间的构建、假设检验、卡方分布、相关与回归等等,完整涵盖AP考试范围。本书运用充满互动性的真实世界情节,教给你有关这门学科的所有基础,为这个枯燥领域的学习带来鲜活的乐趣,不仅让你充分掌握统计学的要义,更会告诉你如何将统计理论应用到日常生活中。
由于 概率论与数理统计 既有明显而广泛的应用背景,又有严密的理论分析,初学者往往难以理解和掌握,诸如互不相容、独立和等可能性等条件往往都隐含在问题的叙述中,导致学生往往觉得掌握了基本理论和方法,但解题时又觉得无从下手.本书与《概率论与数理统计》(何春雄等编,2012年2月版)的教材配套,每章都分基本内容、基本要求、基本知识提要、疑难分析、典型例题选讲及习题详解等6部分编写,以期帮助学生既掌握基本概念、基本理论和方法,又具有运用该课程知识解决有关实际问题的能力。主要内容包括:事件与概率;变量与概率分布;向量及其分布;变量的数字特征;大数定律与中心极限定理。
本书作为第四版,在第三版的基础上增加了一些由新技术产生的新的分析计算方法,并加入了矩阵、线性代数等一些基础计算方法。内容上系统阐述了有限单元法的基本原理及其工程应用,包括杆系结构,弹性力学平面问题,单元分析,整体分析,平面问题高次元,弹性力学轴对称问题,弹性力学空间问题,形函数、坐标变换、等参数单元与无线单元,各种平面与空间单元的比较、应用实例,弹性薄板,弹性薄壳,轴对称壳,弹性厚板和厚壳,流体力学问题,热传导问题,非线性有限元分析方法,塑性力学问题,混凝土徐变、一般黏弹性及黏塑性问题,弹性稳定问题,大位移问题,断裂力学问题,结构动力学问题,岩石力学问题,土力学问题,混凝土与钢筋混凝土结构,工程反分析与数值监控,网络自动生成、误差估计与自适应技术,矩阵,线性代数方程组,变分
本书通过大量例子和插图,用生动的语言深入浅出地阐述了拓扑学这门重要的、充满魅力的数学课程。本书分为两部分,前七章作为部分,介绍了拓扑学这门重要的、充满魅力的课程的基本内容;后七章作为第二部分,论述了拓扑学的概念在其他数学领域、科学以及工程方面的作用和意义。 本书作为拓扑学的入门课程,适用于对拓扑学的应用感兴趣的各专业本科生与研究生。本书分为两部分,前七章作为部分,介绍了拓扑学这门重要的、充满魅力的课程的基本内容;后七章作为第二部分,论述了拓扑学的概念在各领域的作用和意义,这些领域包括数字图像处理、遗传工程、地理信息系统、机器人学、医学(心脏搏动模型)、生物化学、化学、经济学、化学图论、电子线路设计和宇宙学等。 本书特点 在展开内容时,先提供一个简短的、引人入胜的背景
《贝叶斯统计学及其应用》系统地介绍了贝叶斯统计学的基础理论以及在一些领域中的应用。全书共16章,内容分为4个部分:部分,介绍贝叶斯统计学的发展和应用概况,包括第1章(绪论);第二部分,介绍贝叶斯统计学的基础理论,包括第2-6章;第三部分,介绍贝叶斯统计学在一些域中的应用,包括第7-15章;第四部分,介绍贝叶斯计算方法及有关软件,包括第16章。另外,《贝叶斯统计学及其应用》还有两个附录,附录A:贝叶斯学派开山鼻祖——托马斯·贝叶斯小传,附录B: WinBUGS软件及其基本使用介绍。《贝叶斯统计学及其应用》中的一些例题、应用案例,采用R软件,并给出了相应的代码。 《贝叶斯统计学及其应用》注重可读性,力求图文并茂;既有继承国内相关教材的传统部分,又有汲取国外相关教材中流行的直观、灵活的风格。在介绍贝叶斯
本书针对学习过初级微积分以及概率论与统计学预备课程的高年级大学生或刚入学的研究生。不要求正式学习过概率论。章回顾了本书所需要的关于概率论和微积分的知识。 本书着重讲述了概念的开发,并通过生产、金融和操作领域的应用说明了这些概念。本书扩展了《运筹学——应用范例与解法》中所讲述的概率模型,并更加综合地介绍了一些流行的概念。本书应该适用于下列课程: 企业管理学系、运筹学系、数学系、商业学校,以及雇主财务计划中提供的概率论模型或过程中的课程。 运筹学系列中的第二门课程。 为导引性课程提供足够材料的财务工程学中的课程。
《试验设计及其优化》从技术与应用观点出发,重点阐述了试验设计及其数据处理的优良化方法和各种分析技术,以进一步提升试验设计的水平及其优化的成效。 全书共分11章,除介绍试验设计的基本原理、常用方法外,还介绍了试验设计的全新方法、全新研究成果及应用实例。此外,还介绍了试验设计的常用统计软件。 《试验设计及其优化》可作为理、工、农、医、经济、管理等专业本科生的教学用书,也可供科研人员、工程技术人员、设计人员、实验人员、营销人员和管理人员参考。
《论概率》迄今为止,代数沿袭已超过哲学家对其发展过程更深刻的探索,以至于概率往往被人认为是数学而不是逻辑。因此,《论概率》就概率的逻辑性展开阐述,书中有很多新颖的、创造性的理论,并有针对性地提出概率的系统性理论,以希望得到得到大家的指正和补充。
哥德巴赫猜想、孪生素数、素数分布、华林问题,除数问题、圆内整点问题、整数分拆及黎曼猜想等数论问题吸引了古今无数的数学爱好者。《解析数论基础》全面详细地讨论了迄今为止研究这些问题的重要的分析方法、理论和结果,介绍了它们的历史及新进展,是研究这些问题必不可少的入门书。
微分方程在数学以外的许多领域有着广泛的应用,它对数学领域中的许多分支起着有效的联结作用。本书是《Universitext》丛书之一,是一部理想的研究生教材。我们曾影印出版了第2版和第4版,第6版与第4版相比,内容做了较大的修改和补充,增加了90页的篇幅(近1/3内容),包括鞅表示论、变分不等式和控制等内容,书后附有部分习题解答和提示。
《模糊集理论及其应用》系统介绍了模糊集理论及其应用的基本知识和研究方法.全书共分三个部分。部分详细介绍模糊集合的基本理论;第二部分系统介绍了模糊聚类分析、模糊模式识别、模糊综合评判、模糊决策与预测、模糊规划、模糊概率和模糊统计等研究领域的基本原理、研究方法及其应用程序;第三部分介绍模糊推理的基本理论与算法,以及模糊控制系统的基本原理。 《模糊集理论及其应用》可作为高等院校数学类本科生,以及经济类、管理类、机械类、计算机科学类、信息科学类等专业高年级本科生和研究生的教材,也可作为工程技术人员的参考书。
本书是专为高等院校学生学习概率论与数理统计课程编写的教材,也可作为有关专业的参考书与从事概率论与数理统计相关工作的科研与工程技术人员的参考书。 本书分为上、下册,共10章,上册包括概率论的基本概念;*变量及其分布;多维*变量及其分布;*变量的数字特征;大数定律与中心极限定理及概率论的简单应用等知识。下册包括数理统计的基本概念;样本分布;参数估计;假设检验;线性统计推断以及常用的多元统计方法。 本书每章节末都配有大量的思考题、基本练习,综合练习与自测题,帮助读者循序渐进地牢固地掌握概率论与数理统计知识。
本书揭开趣味游戏、艺术设计和日常生活中的数学密码,通过新颖话题和精美图示展现算术与几何中隐藏的妙趣,从最简单的数学原理走入算法的精彩世界,展现算法破解数学谜题的无穷威力。本书适合所有数学爱好者阅读。
《救命的数学》由詹姆斯·D·斯坦因所著,即使你上学时讨厌数学,你也会喜欢上《救命的数学》这本书。我真希望当年我的老师能像詹姆斯·斯坦因那样给我们上数学课:把数学作为解决现实世界中的日常问题的实用工具来介绍。斯坦因用朴实的语言和来自现实生活的例子,向大家演示了最基本的数学如何能帮助我们避免代价高昂的错误。斯坦因撰写的这本数学书简明易懂,轻松活泼,可以说他给大家表演了一场有关数学的文学帽子戏法。许多学生在学数学的时候都会问:“我什么时候才会需要这些东西?”本书就是这一问题的答案。